
1

Systems Programming

Meeting 1:

Introduction

2

Welcome

• Course Registration

• Register to submit your data at
http://teaching.yfolajimi.com/register.html

• Course details/resources:
• http://teaching.yfolajimi.com/Sys-Prog-14-15.html

• Major Coverage

• Unix/Linux, Assembly Language, C, C++

• Lecture Notes

• To be provided in course website

3

Course Outline

• Introduction to Systems

Programming

• Introduction to the Unix

Operating System

• Linux Distributions &

Installation

• Linux Vs Windows

• Terminal V/s File Manager

• Must Know Linux/Unix

Commands

• File Permissions in

Linux/Unix

• Introduction to

Assembler and Machine

Language

• Compiling, assembling,

linking, loading

• Programming with C

• Differences between C &

Java

• Operator Overloading

and polymorphism

• Exception Handling

• Programming with C++

4

What is systems

programming?

•The activity of computer programming system

software.

•The primary distinguishing characteristic of systems

programming when compared to application

programming is that application programming aims

to produce software which provides services to the

user (e.g. word processor)

•systems programming aims to produce software

which provides services to the computer hardware

(e.g. disk defragmenter).

•It requires a greater degree of hardware awareness

5

Attributes that characterize

systems programming:

•The programmer will make assumptions about
the hardware and other properties of the system
that the program runs on, and will often exploit
those properties,

•for example by using an algorithm that is known to be efficient
when used with specific hardware.

•Usually a low-level programming language or
programming language dialect is used that:

•can operate in resource-constrained environments

•is very efficient and has little runtime overhead

•has a small runtime library, or none at all

•allows for direct and "raw" control over memory access and
control flow

•lets the programmer write parts of the program directly in
assembly language

6

Attributes that characterize

systems programming:

•Often systems programs cannot be run in a debugger.
Running the program in a simulated environment can
sometimes be used to reduce this problem.

•In system programming, often limited programming facilities
are available. Because of those limitations, monitoring and
logging are often used; operating systems may have extremely
elaborate logging subsystems.

•The use of automatic garbage collection is not common

•debugging is sometimes hard to do.

•The runtime library, if available at all, is usually far less powerful, and
does less error checking.

•Implementing certain parts in operating system and
networking requires systems programming, for example
implementing Paging (Virtual Memory) or a device driver for an
operating system.

7

System programming

language

•a programming language used for system
programming; such languages are designed for
writing system software, which usually requires
different development approaches when compared
to application software.

8

History

•Originally systems programmers invariably wrote in assembly
language.

•Experiments with hardware support in high level languages
in the late 1960s led to such languages as PL/S, BLISS, BCPL,
and extended ALGOL for Burroughs large systems.

• In the 1980s, C became ubiquitous, aided by the growth of
Unix.

•More recently C++ has seen some use, for instance a subset
of it is used in the I/O Kit drivers of Mac OS X.[1]

9

System programming

language (History)

•The earliest system software was written in assembly
language for reasons including efficiency of object code,
compilation time, and ease of debugging. Application
languages such as FORTRAN were used for system
programming, although they usually still required some
routines to be written in assembly language.

10

System programming

language (History)

•Mid-level languages
•Mid-level languages "have much of the syntax and
facilities of a higher level language, but also provide direct
access in the language (as well as providing assembly
language) to machine features.“

•One of the earliest of these mid-level programming
languages was PL360, which had the general syntax of
ALGOL 60, but whose statements directly manipulated
CPU registers and memory.

•Other languages in this category are MOL-360 and PL/S.

11

System programming

language (History)

•Higher-level languages
•An early example of this kind of language is LRLTRAN,which
extended Fortran with features for character and bit
manipulation, pointers, and directly-addressed jump tables.

•Subsequently, languages such as C were developed, where the
combination of features was sufficient to write system software,
and a compiler could be developed that generated efficient
object programs on modest hardware

• Although many other languages were developed, C and C++
are the ones that have survived.

•System Programming Language (SPL) is also the name of a
specific language on the HP 3000 computer series, used for its
operating system HP Multi-Programming Executive, and other
parts of its system software.

12

Major languages

