Logic

(Propositional Logic)

REPRESENTING KNOWLEDGE: LOGIC

- Logic is the branch of mathematics / philosophy concerned with knowledge and reasoning
- Aristotle distinguished between three types of arguments:
 - LOGIC arguments: that produce true conclusions from true premisses
 - DIALECTIC arguments: that produce true conclusions from plausible premisses
 - SOPHISTIC arguments: incorrect

VALID ARGUMENTS: CONNECTIVES

If students like AI, Folajimi is happy

Students like AI

Folajimi is happy

VALID ARGUMENTS: QUANTIFIERS

Birds fly

Swallows are birds

Swallows fly

INVALID ARGUMENTS (FALLACIES)

If students like AI, Folajimi is happy

Folajimi is happy

Students like AI

TWO MAIN FORMS OF LOGIC

- PROPOSITIONAL CALCULUS
 - Valid arguments involving CONNECTIVES
 - Propositions remain unanalyzed
- PREDICATE CALCULUS
 - Analyze propositions into PREDICATES and ARGUMENTS
 - This makes it possible to study valid arguments involving QUANTIFIERS, as well (FIRST ORDER LOGIC)
 - (A generalization of Syllogism logic)

CHARACTERISTICS OF A MODERN LOGIC

- VOCABULARY: the set of SYMBOLS in the language
- SYNTAX: a set of rules to combine symbols into phrases
- SEMANTICS: the interpretation of the symbols and the phrases
- A PROOF THEORY: a system of formal rules to derive formulas from other formulas

– In classical logic, preserving VALIDITY

PROPOSITIONAL CALCULUS

- The logic of CONNECTIVES: and, or, not, if ... then
- Originally formulated by the Stoics (Crisippo)

REPRESENTING KNOWLEDGE IN LOGIC: PROPOSITIONAL CALCULUS

- p: students like Al
- q: Folajimi is happy
- $p \rightarrow q$?

• r: Every bicycle has 2 wheels

THE CONNECTIVES: CONJUNCTION

- p: CSC is in UI
- q: CSC has 500 students
- p & q: CSC is in UI and (CSC) has 500 students
- CSC and Chemistry are in UI
- Catering Department has offices in Awo and Mellamby

THE CONNECTIVES: NEGATION

- p: The University of Ibadan has a Faculty of Science
- ~p: It is not the case that the University of Ibadan has a Faculty of Science
- ~p: The University of Ibadan does not have a Faculty of Science
- ~p: There is no Faculty of Science at the University of Ibadan

THE CONNECTIVES: DISJUNCTION

- p: CSC has 500 students
- q: CSC has 700 students
- p \/ q: CSC has 500

or (CSC has) 700 students

• Folajimi studied in Nigeria or USA

THE CONNECTIVES: IMPLICATION

- If students like AI, Folajimi is happy
 - Two clear cases:
 - If the students like AI and Folajimi is happy, the implication is true
 - If the students like AI, but Folajimi is not happy, the implication is false
 - There are also difficult cases:
 - If the students don't like AI, is the implication true or false?
 - Convention : yes!
 - Argument: implication does not make any claim at all about these cases)
 - Unpleasant consequence: If 2+2=5, I am the Lecturer: true!!

THE CONNECTIVES: BICONDITIONAL

- I will go walking if I get my car fixed
 - IMPLICATION: only false if I get my car fixed but then I don't go walking. OK if I go walking even if I don't get my car fixed
 - Often more intuitive if reverse: If I get my car fixed, I will go walking.
- I will go walking if, and only if, I get my car fixed
 - BICONDITIONAL: if I don't get my car fixed I don't go walking
 - Getting the car fixed is a NECESSARY and SUFFICIENT condition to go walking

Propositional Logic

Propositional logic is concerned with the truth or falsehood of statements (propositions) like:

the valve is closed five plus four equals nine Connectives: and ∧ or ∨ not implies → equivalent ↔

$$(\mathsf{X} \to (\mathsf{Y} \land \mathsf{Z})) \leftrightarrow ((\mathsf{X} \to \mathsf{Y}) \land (\mathsf{X} \to \mathsf{Z}))$$

"X implies Y and Z is the same as X implies Y and X implies Z"

Propositional Logic

- Propositional Logic is declarative, pieces of syntax correspond to facts
- Propositional Logic is compositional
 - Meaning of A \wedge B derived from meaning of A and B
- Meaning in Propositional Logic is contextindependent
- Propositional Logic has very limited expressive power

- Cannot say "Scottish men are careful with money"

Propositional logic

- Logical constants: true, false
- Propositional symbols: P, Q, S, ...
- Wrapping **parentheses**: (...)
- Sentences are combined by connectives:
 - \land ...and
 - ∨...or
 - \Rightarrow ...implies
 - ⇔..is equivalent
 - ¬ ...not

Propositional logic (PL)

- A simple language useful for showing key ideas and definitions
- User defines a set of propositional symbols, like P and Q.
- User defines the semantics of each of these symbols, e.g.:
 - P means "It is hot"
 - Q means "It is humid"
 - R means "It is raining"
- A sentence (aka formula, well-formed formula, wff) defined as:
 - A symbol
 - If S is a sentence, then ~S is a sentence (e.g., "not")
 - If S is a sentence, then so is (S)
 - If S and T are sentences, then (S v T), (S ^ T), (S => T), and (S <=> T) are sentences (e.g., "or," "and," "implies," and "if and only if")
 - A finite number of applications of the above

Examples of PL sentences

• (P ^ Q) => R

"If it is hot and humid, then it is raining"

• Q => P

"If it is humid, then it is hot"

• Q

"It is humid."

- A better way:
 - Ho = "It is hot"
 - Hu = "It is humid"
 - R = "It is raining"

A BNF grammar of sentences in propositional logic

```
S := <Sentence> ;
```

```
<Sentence> := <AtomicSentence> |
 <ComplexSentence> ;
<AtomicSentence> := "TRUE" | "FALSE" |
                    "P" | "Q" | "S" ;
<ComplexSentence> := "(" <Sentence> ")" |
          <Sentence> <Connective> <Sentence>
          "NOT" <Sentence> ;
<Connective> := "NOT" | "AND" | "OR" |
```

"IMPLIES" | "EQUIVALENT" ;

Some terms

- The meaning or **semantics** of a sentence determines its **interpretation**.
- Given the truth values of all of symbols in a sentence, it can be "evaluated" to determine its truth value (True or False).
- A model for a KB is a "possible world" in which each sentence in the KB is True.
- A valid sentence or tautology is a sentence that is True under all interpretations, no matter what the world is actually like or what the semantics is. Example: "It's raining or it's not raining."
- An inconsistent sentence or contradiction is a sentence that is False under all interpretations. The world is never like what it describes, as in "It's raining and it's not raining."
- P entails Q, written P ⊨ Q, means that whenever P is True, so is Q. In other words, all models of P are also models of Q.

Truth tables

And			Or		
р	q	$p \cdot q$	р	q	$p \lor q$
T T F F	T F T F	T F F F	$T \ T \ F \ F$	T F T F	$T \ T \ T \ F$
	<i>If</i>	then		No	ot
р	q	$p \Rightarrow q$		Р	$\sim p$
T T F F	T F T F	T F T T		$T \\ F$	F T

A bit more about =>

- Isn't it strange that P=>Q is true whenever P is false?
 - Consider P: "if you try" and Q: "you will succeed". P=>Q :
 "if you try then you will succeed"
 - Obviously if P and Q are true, P=>Q is true and if P is true and Q is false then P=>Q is false
 - But if P is false (i.e. you don't try) then there is no way we can tell that P=>Q is false. So it must be true
 - There is no such thing as "Unknown" value in propositional logic

Truth tables II

The five logical connectives:

P	Q	$\neg P$	$P \land Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False Evler	False True	True	False False	False True	True True	True
Тапse Тrue	False	False	False	Ттие Тпие	False	False
True	True	False	True	Тпие	True	True

A complex sentence:

Р	Н	$P \lor H$	$(P \lor H) \land \neg H$	$((P \lor H) \land \neg H) \Rightarrow P$
False	False	False	False	True
False	Тпие	Тгие	False	True
Тгие	False	True	Тгие	True
True	Тпие	Тгие	False	Тгие

Models of complex sentences

P∨Q

P∧Q

Inference rules

- Logical inference is used to create new sentences that logically follow from a given set of predicate calculus sentences (KB).
- An inference rule is **sound** if every sentence X produced by an inference rule operating on a KB logically follows from the KB. (That is, the inference rule does not create any contradictions)
- An inference rule is **complete** if it is able to produce every expression that logically follows from (is entailed by) the KB. (Note the analogy to complete search algorithms.)

Sound rules of inference

- Here are some examples of sound rules of inference.
- Each can be shown to be sound using a truth table: A rule is sound if its conclusion is true whenever the premise is true.

RULE	PREMISE	CONCLUSION
Modus Ponens	A, A => B	В
And Introduction	А, В	A ^ B
And Elimination	A ^ B	A
Double Negation	~~A	A
Unit Resolution	A v B, ~B	А
Resolution	A v B, ~B v C	A v C

Soundness of modus ponens

A	B	$A \rightarrow B$	OK?
True	True	True	
True	False	False	
False	True	True	
False	False	True	

Soundness of the resolution inference rule

α	β	γ	$\alpha \lor \beta$	$\neg\beta \lor \gamma$	$\alpha \lor \gamma$
False	False	False	False	Тгие	False
False	False	True	False	Тгие	True
False	Тrue	False	True	False	False
<u>False</u>	<u>True</u>	True	True	<u>True</u>	True
True	<u>False</u>	False	True	True	True
True	<u>False</u>	Тпие	True	<u>True</u>	True
True	True	False	Тгие	False	True
<u>True</u>	<u>True</u>	<u>True</u>	True	<u>True</u>	True

Proving Things

- Consider a KB consisting of the following rules and facts (collectively called premises)
- (Ho ^ Hu) => R

"If it is hot and humid, then it is raining"

• Hu => Ho

"If it is humid, then it is hot"

• Hu

"It is humid."

We want to prove that it is raining

Proving things

- A proof is a sequence of sentences, where each sentence is either a premise or a sentence derived from earlier sentences in the proof by one of the rules of inference.
- The last sentence is the **theorem** (also called goal or query) that we want to prove.
- Example for the "weather problem" given above.

1 Hu	Premise	"It is humid"
2 Hu=>Ho	Premise	"If it is humid, it is hot"
3 Ho	Modus Ponens(1,2)	"It is hot"
4 (Ho^Hu)=>R	Premise	"If it's hot & humid, it's raining"
5 Ho^Hu	And Introduction(1,2)	"It is hot and humid"
6 R	Modus Ponens(4,5)	"It is raining"

Equivalences in PL

idempotency laws

 $A \wedge A \simeq A$ $A \lor A \sim A$

commutative laws

 $A \wedge B \simeq B \wedge A$

 $A \vee B \simeq B \vee A$

associative laws

 $(A \land B) \land C \simeq A \land (B \land C)$ $(A \lor B) \lor C \simeq A \lor (B \lor C)$

distributive laws

 $A \lor (B \land C) \simeq (A \lor B) \land (A \lor C)$

de Morgan laws

 $\neg (A \land B) \simeq \neg A \lor \neg B$ $\neg (A \lor B) \simeq \neg A \land \neg B$ $A \land \neg A \simeq I$

$A \wedge (B \vee C) \simeq (A \wedge B) \vee (A \wedge C)$

Note: Proof using Truth Table

other negation laws

 $\neg (A \rightarrow B) \simeq A \land \neg B$ $\neg (A \leftrightarrow B) \simeq (\neg A) \leftrightarrow B \simeq A \leftrightarrow (\neg B)$

laws for eliminating certain connectives

 $A \leftrightarrow B \simeq (A \rightarrow B) \land (B \rightarrow A)$ $\neg A \simeq A \rightarrow f$ $A \rightarrow B \simeq \neg A \lor B$

simplification laws

$A \wedge \mathbf{f} \simeq \mathbf{f}$
$A \wedge \mathbf{t} \simeq A$
$A \vee \mathbf{f} \simeq A$
$A \lor \mathbf{t} \simeq \mathbf{t}$
$\neg \neg A \simeq A$
$A \vee \neg A \simeq \mathbf{t}$
$4 \wedge \neg 4 \sim f$

Duality Principle

- Propositional logic enjoys a principle of duality:
 - for every equivalence A ⇔ B there is another equivalence A' ⇔ B' where A', B' are derived from A, B by exchanging ^ with v and t with f. Before applying this rule, remove all occurrences of →and ⇔, since they implicitly involve ^ and v.

Entailment and derivation

• Entailment: $KB \models Q$

- Q is entailed by KB (a set of premises or assumptions) if and only if there is no logically possible world in which Q is false while all the premises in KB are true.
- Or, stated positively, Q is entailed by KB if and only if the conclusion is true in every logically possible world in which all the premises in KB are true.

Derivation: KB ⊢ Q

 We can derive Q from KB if there is a proof consisting of a sequence of valid inference steps starting from the premises in KB and resulting in Q

Two important properties for inference

Soundness: If $KB \vdash Q$ then $KB \models Q$

- If Q is derived from a set of sentences KB using a given set of rules of inference, then Q is entailed by KB.
- Hence, inference produces only real entailments, or any sentence that follows deductively from the premises is valid.

Completeness: If $KB \models Q$ then $KB \vdash Q$

- If Q is entailed by a set of sentences KB, then Q can be derived from KB using the rules of inference.
- Hence, inference produces all entailments, or all valid sentences can be proved from the premises.

Definitions: Normal Forms

- A literal is an atomic formula or its negation. Let K, L, L', ... stand for literals.
- A formula is in Negation Normal Form (NNF) if the only connectives in it are ^, v, and ¬, where is only applied to atomic formulae.
- A formula is in Conjunctive Normal Form (CNF) if it has the form A₁ ^ ... ^ A_m, where each A_i is a disjunction of one or more literals.
- A formula is in Disjunctive Normal Form (DNF) if it has the form A₁ v ... vA_m, where each A_i is a conjunction of one or more literals.

Normal Forms

- An atomic formula like P is in all the normal forms NNF, CNF, and DNF. The formula $(P \lor Q) \land (\neg P \lor S) \land (R \lor P)$ is in CNF
- Simplifying the formula (P ∨ Q) ∧ (¬P ∨ Q) ∧ (R ∨ S)
 to Q ∧ (R ∨ S) counts as an improvement.
- Converting $\neg (A \rightarrow B)$ to NNF yields $A \wedge \neg B$.
- Every formula in CNF or DNF is also in NNF, but the NNF formula ((¬P ∧ Q) ∨ R) ∧ P is neither CNF or DNF

Translation to normal form

- Every formula can be translated into an equivalent formula in NNF, CNF, or DNF
- Step 1. Eliminate →and ⇔ by repeatedly applying the following equivalences:

 $A \leftrightarrow B \simeq (A \to B) \land (B \to A)$ $A \to B \simeq \neg A \lor B$

• Step 2. Push negations in until they apply only to atoms, repeatedly replacing by the equivalences

 $\neg \neg A \simeq A$ $\neg (A \land B) \simeq \neg A \lor \neg B$ $\neg (A \lor B) \simeq \neg A \land \neg B$

• At this point, the formula is in Negation Normal Form.

Translation to normal form (contd.)

 Step 3. To obtain CNF, push disjunctions in until they apply only to literals. Repeatedly replace by the equivalences
 A ∨ (B ∧ C) ≃ (A ∨ B) ∧ (A ∨ C)
 (B ∧ C) ∨ A ≃ (B ∨ A) ∧ (C ∨ A)

- Step 4. Simplify the resulting CNF by deleting any disjunction that contains both P and $\neg P$, since it is equivalent to t. Also delete any conjunct that includes another conjunct (meaning, every literal in the latter is also present in the former). This is correct because $(A \lor B) \land A \simeq A$.
- Finally, two disjunctions of the form $P \lor A$ and $\neg P \lor A$ can be replaced by A, thanks to the equivalence $(P \lor A) \land (\neg P \lor A) \simeq A$.

Translation to normal form (contd.)

Steps 3' and 4'. To obtain DNF, apply instead the other distributive law:
 A ∧ (B ∨ C) ≃ (A ∧ B) ∨ (A ∧ C)

 $(B \lor C) \land A \simeq (B \land A) \lor (C \land A)$

- Exactly the same simplifications can be performed for DNF as for CNF, exchanging
- the roles of ^ and v.

Tautology checking using CNF

- Here is a method of proving theorems in propositional logic. To prove A, reduce it to CNF. If the simplified CNF formula is t then A is valid because each transformation preserves logical equivalence. And if the CNF formula is not t, then A is not valid.
- Proof:
 - suppose the CNF formula is A₁ ^ ... ^ A_m. If A is valid then each A_i must also be valid. Write A_i as L₁v ... vL_n, where the L_j are literals. We can make an interpretation I that falsifies every L_j, and therefore falsifies A_i.
 - Define I such that, for every propositional letter P,

 $I(P) = \begin{cases} \mathbf{f} & \text{if } L_j \text{ is } P \text{ for some } j \\ \mathbf{t} & \text{if } L_j \text{ is } \neg P \text{ for some } j \end{cases}$

- This definition is legitimate because there cannot exist literals L_j and L_k such that L_j is $\neg L_k$; if there did, then simplification would have deleted the disjunction Ai.

Examples

Example 1 Start with

 $P \lor Q \to Q \lor R$

Step 1, eliminate \rightarrow , gives

 $\neg (P \lor Q) \lor (Q \lor R)$

Step 2, push negations in, gives

 $(\neg P \land \neg Q) \lor (Q \lor R)$

Step 3, push disjunctions in, gives

 $(\neg P \lor Q \lor R) \land (\neg Q \lor Q \lor R)$

Simplifying yields

 $(\neg P \lor Q \lor R) \land \mathbf{t}$ $\neg P \lor Q \lor R$

The interpretation $P \mapsto t$, $Q \mapsto f$, $R \mapsto f$ falsifies this formula, which is equivalent to the original formula. So the original formula is not valid.

Examples

Example 2 Start with

$$P \land Q \rightarrow Q \land P$$

Step 1, eliminate \rightarrow , gives $\neg (P \land Q) \lor Q \land P$

Step 2, push negations in, gives

$$(\neg P \lor \neg Q) \lor (Q \land P)$$

Step 3, push disjunctions in, gives

$$(\neg P \lor \neg Q \lor Q) \land (\neg P \lor \neg Q \lor P)$$

Simplifying yields t ^ t, which is t. Both conjuncts are valid since they contain a formula and its negation. Thus $P \land Q \rightarrow Q \land P$ is valid.

Propositional logic is a weak language

- Hard to identify "individuals." E.g., Mary, 3
- Can't directly talk about properties of individuals or relations between individuals. E.g. "Bill is tall"
- Generalizations, patterns, regularities can't easily be represented. E.g., all triangles have 3 sides
- First-Order Logic (abbreviated FOL or FOPC) is expressive enough to concisely represent this kind of situation.

FOL adds relations, variables, and quantifiers, e.g.,

• "Every elephant is gray": $\forall x (elephant(x) \rightarrow gray(x))$

• "There is a white alligator": ∃ x (alligator(X) ^ white(X))

Example

- Consider the problem of representing the following information:
 - -Every person is mortal.
 - -Confucius is a person.
 - -Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

Example II

 In PL we have to create propositional symbols to stand for all or part of each sentence. For example, we might do:

P = "person"; Q = "mortal"; R = "Confucius"

- so the above 3 sentences are represented as:
 P => Q; R => P; R => Q
- Although the third sentence is entailed by the first two, we needed an explicit symbol, R, to represent an individual, Confucius, who is a member of the classes "person" and "mortal."
- To represent other individuals we must introduce separate symbols for each one, with means for representing the fact that all individuals who are "people" are also "mortal."

Summary (so far)

- The process of deriving new sentences from old ones is called **inference**.
 - Sound inference processes derives true conclusions given true premises.
 - Complete inference processes derive all true conclusions from a set of premises.
- A valid sentence is true in all worlds under all interpretations.
- If an implication sentence can be shown to be valid, then given its premise its consequent can be derived.
- Different logics make different **commitments** about what the world is made of and what kind of beliefs we can have regarding the facts.
 - Logics are useful for the commitments they do not make because lack of commitment gives the knowledge base writer more freedom.

Summary (so far)

- **Propositional logic** commits only to the existence of facts that may or may not be the case in the world being represented.
 - It has a simple syntax and a simple semantic. It suffices to illustrate the process of inference.
 - Propositional logic quickly becomes impractical, even for very small worlds.

First-order Logic

- Whereas Propositional Logic assumes the world contains facts, First-order Logic assumes the world contains:
 - Objects; people, houses, games, wars, colours...
 - Relations; red, round, bogus, prime, brother, bigger_than, part_of...
 - Functions; father_of, best_friend, second_half_of, number_of_wheels...

Aside: Logics in General

	Ontological	Epistemological
Language	Commitment	Commitment
Proposotional Logic	facts	true/false/unknow n
First-order Logic	facts, objects, relations	true/false/unknow n
	facts, objects, relations,	
Temporal Logic	times	true/false/unknow n
Probabilistic Logic	facts	degree of belief \in [0, 1]
Fuzzy Logic	degrees of truth \in [0, 1]	know n interval value

Aside: Ontology & Epistemology

- **ontology** Ontology is the study of what there is, an inventory of what exists. An ontological commitment is a commitment to an existence claim.
 - From <u>Dictionary of Philosophy of Mind</u> ontology
 - http://www.artsci.wustl.edu/~philos/MindDict/ontology.html
 - Ontological Commitment:
 - What exists in the world
- **epistemology** A major branch of philosophy that concerns the forms, nature, and preconditions of knowledge.
 - Epistemological Commitment:
 - What an agent believes about facts

Predicate Calculus

Two important extensions to Propositional Logic are:

predicates and quantifiers

 Predicates are statements about objects by themselves or in relation to other objects. Some examples are:

less-than-zero

weighs-more-than

- The quantifiers then operate over the predicates. There are two quantifiers:
 - \forall for all (the universal quantifier)
 - \exists there exists (the existential quantifier)

So with predicate calculus we can make statements like:

 \forall XYZ: Smaller(X,Y) \land Smaller(X,Z) \rightarrow Smaller(X,Z)

Predicate Calculus (cont'd)

Predicate calculus is very general but not very powerful

Two useful additions are functions and the predicate equals absolute-value number-of-wheels colour

First Order Logic

Two individuals are "equal" if and only if they are indistinguishable under all predicates and functions.

Predicate calculus with these additions is a variety of *first order logic*.

A logic is of *first order* if it permits quantification over individuals but not over predicates and functions. For example a statement like "all predicates have only one argument" cannot be expressed in first order logic.

The advantage of first order logic as a representational formalism lies in its formal structure. It is relatively easy to check for *consistency* and *redundancy*.

First Order Logic

- Advantages stem from rigid mathematical basis for first order logic
- This rigidity gives rise to problems. The main problem with first order logic is that it is monotonic.

"If a sentence S is a logical consequence of a set of sentences A then S is still a logical consequence of any set of sentences that includes A. So if we think of A as embodying the set of beliefs we started with, the addition of new beliefs cannot lead to the *logical* repudiation of old consequences."

So the set of theorems derivable from the premises is not reduced (increases monotonically) by the adding of new premises.