M/M/I model

- Service rate $=\mu / \mathrm{h}$

- Arrival rate $=\lambda / \mathrm{h}$
- System does not take into account the earlier states of the system in order to define the present state of this system. (memoryless property)
- only one event will take place in a small interval of time, h
- Either arrival or service
- At steady state, we want to know the probability, that the system has certain customers at a point in time
- customer is interested in:
- L_{s} : length of the system (expected number of people who are actually in the system, including the person who is being served)
- L_{q} : length of the queue (expected number of people who are waiting for service in this system)
- W_{s} : waiting time in the system
- W_{q} : waiting time in the queue.
- If we derive an expression for one, we can derive an expression for all
- We are interestee in expression for the steady state probabilities that there are $0, I, 2,3 \ldots$. People in the system. i.e. P_{0}, P_{2}, P_{3}, etc

M/M/I model (contd)

Probability that there are n people in the system at time $t+h$ is given as:

- $P_{n}(t+h)=P_{n-1}(t) *$ Probability of I arrival and no service $+\mathrm{P}_{\mathrm{n}+1}(\mathrm{t}) *$ probability of no arrival and one service $+P_{n}(t)$ * probability of no arrival and no service)
- Note that we are not considering other probabilities due to the assumption that in a small interval, only one event can take place e.g we will not consider probabiity of one arrivan and one service or probability of 2 arrivals)
${ }^{\circ} \mathrm{P}($ one arrival $=\lambda h) \rightarrow P($ no arrival $)=1-\lambda h$
${ }^{\circ} P($ one service $=\mu h) \rightarrow P($ no service $)=1-\mu h$

M/M/I model (contd)

$$
\begin{gathered}
P_{n}(t+h)=P_{n-1}(t) * \lambda h(1-\mu h)+P_{n+1}(t) \mu h(1-\lambda h) \\
+P_{n}(t)(1-\lambda h)(1-\mu h)
\end{gathered}
$$

$P_{n}(t+h)=P_{n-1}(t) *\left(\lambda h-\lambda \mu h^{2}\right)+P_{n+1}(t)\left(\mu h-\lambda \mu h^{2}\right)+$ $P_{n}(t)\left(1-\mu h-\lambda h+\lambda \mu h^{2}\right)$
We leave out the higher order atoms i.e $\lambda \mu \mathrm{h}^{2}=0$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}}(\mathrm{t}+\mathrm{h}) & =\mathrm{P}_{\mathrm{n}-1}(\mathrm{t}) \lambda \mathrm{h}+\mathrm{P}_{\mathrm{n}+1}(\mathrm{t}) \mu \mathrm{h}+\mathrm{P}_{\mathrm{n}}(\mathrm{t})(1-\lambda \mathrm{h}-\mu \mathrm{h}) \\
& =\mathrm{P}_{\mathrm{n}-1}(\mathrm{t}) \lambda \mathrm{h}+\mathrm{P}_{\mathrm{n}+1}(\mathrm{t}) \mu \mathrm{P}+\mathrm{P}_{\mathrm{n}}(\mathrm{t})-\mathrm{P}_{\mathrm{n}}(\mathrm{t}) \lambda \mathrm{P}-\mathrm{P}_{\mathrm{n}}(\mathrm{t}) \mu \mathrm{h} \\
\mathrm{P}_{\mathrm{n}}(\mathrm{t}+\mathrm{h}) & -\mathrm{P}_{\mathrm{n}}(\mathrm{t})=\mathrm{P}_{\mathrm{n}-1}(\mathrm{t}) \lambda \mathrm{h}+\mathrm{P}_{\mathrm{n}+1}(\mathrm{t}) \mu \mathrm{h}-\mathrm{h} \mathrm{P}_{\mathrm{n}}(\mathrm{t})(\lambda+\mu)
\end{aligned}
$$

Dividing through by h

$$
\underline{P}_{\underline{n}}(t+h)-P_{n}(t)=P_{n-1}(t) \lambda+P_{n+1}(t) \mu-P_{n}(t)(\lambda+\mu)
$$

M/M/I model (contd)

Now, for steady state, probability is not going to be time dependent therefore
$\underline{P}_{\underline{n}}(\mathrm{t}+\mathrm{h})-\mathrm{P}_{\underline{n}}(\mathrm{t})=0$
h
Hence for steady state:
$0=P_{n-1} \lambda+P_{n+1} \mu-P_{n}(\lambda+\mu)$
$\lambda P_{n-1}+\mu P_{n+1}=(\lambda+\mu) P_{n}$

M/M/I model (contd)

- Now,
-Probability of 0 person in the system at time $\mathrm{t}+\mathrm{h}$ is given as:
- $\mathrm{P}_{0}(\mathrm{t}+\mathrm{h})=\mathrm{P}_{1}(\mathrm{t}) *$ (probability of no arrival and one service) $+P_{0}(t) *$ (probability of no arrival and no service)
$P_{0}(t+h)=P_{1}(t)(1-\lambda h) \mu h+P_{0}(t)(1-\lambda h) 1$
(note that probability of no service is 1)
- Expanding and leaving out the higher order $\mathrm{P}_{0}(\mathrm{t}+\mathrm{h})=\mathrm{P}_{1}(\mathrm{t}) \mu \mathrm{h}+\mathrm{P}_{0}(\mathrm{t})-\mathrm{P}_{0}(\mathrm{t}) \lambda \mathrm{h}$

$$
\frac{\mathrm{P}_{0}(\mathrm{t}+\mathrm{h})-\mathrm{P}_{0}(\mathrm{t})}{\mathrm{h}}=\mathrm{P}_{1}(\mathrm{t}) \mu-\mathrm{P}_{0}(\mathrm{t}) \lambda
$$

At steady state, $\mathrm{h}=0$ therefore

$$
\begin{equation*}
\mu P_{1}=\lambda P_{0} . \tag{2}
\end{equation*}
$$

Recall:

$\lambda P_{n-1}+\mu P_{n+1}=(\lambda+\mu) P_{n}$
$\mu P_{1}=\lambda P_{0} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.................................
From equation (2), we can derive
$P_{1}=\frac{\lambda}{\mu} P_{0}$
Substituting in equation (I)
$\lambda P_{0}+\mu P_{2}=(\lambda+\mu) P_{1}$
$\lambda P_{0}+\mu P_{2}=\lambda P_{1}+\mu P_{1}$
But $\mu \mathrm{P}_{\mathrm{I}}=\lambda \mathrm{P}_{0}$
$\lambda \mathrm{P}_{0}+\mu \mathrm{P}_{2}=\lambda \mathrm{P}_{1}+\mu \mathrm{P}_{1}$
But from (2), $\mu \mathrm{P}_{\mathrm{I}}=\lambda \mathrm{P}_{0}$
Hence
$\lambda \mathrm{P}_{0}+\mu \mathrm{P}_{2}=\lambda \mathrm{P}_{1}+\lambda \mathrm{P}_{0}$

- $\mu \mathrm{P}_{2}=\lambda \mathrm{P}_{1}$
- $P_{2}=\left(\frac{\lambda}{\mu}\right) P_{1}$
- And we know that $P_{1}=\frac{\lambda}{\mu} P_{0}$
- Therefore $P_{2}=\left(\frac{\lambda}{\mu}\right)^{2} P_{0}$
∞
- Let $p=\frac{\lambda}{\mu}$

So we have:
$\mathrm{P}_{\mathrm{I}}=p \mathrm{P}_{0}$
$P_{2}=p P_{1}=p^{2} P_{0}$
In a similar manner we derive:
$P_{3}=p P_{2}=p^{3} P_{0}$
Hence:
$P_{n}=p^{n} P_{0}$

We still don't know the actual values of
$P_{1}, P_{2}, \ldots . . P_{n}$
Note that they are all dependent on P_{0}
Hence we need to know the value of P_{0}
Recall that sum of steady-state probabilities $=1$
Hence $P_{0}+P_{1}+\ldots \ldots+P_{\infty}=1$
$P_{0}+p P_{0}+p^{2} P_{0}+p^{3} P_{0}+\ldots+\infty=1$
$\mathrm{P}_{0}\left(\mathrm{I}+p+p^{2}+p^{3}+\ldots+p^{\infty}\right)=1$
Note that this is an infinite series and a geometric series
We know that the sum to infinite of a geometric series $=\mathrm{I}-$ r provided $\mathrm{r}<1$
And $p=\frac{\lambda}{\mu}<I$ for infinite population model

When $p=\frac{\lambda}{\mu}<I$, we can apply the infinite geometric series summation formula
$1-p=I$ from which
$P_{o}\left(\frac{1}{1-p}\right)=1$
$P_{o}=I-p$
Now $p_{1}=p \mathrm{P}_{0}=p(1-p)$
In general terms,
$P_{n}=p^{n} P_{0}=p^{n}(1-p)$
We know that $p=\frac{\lambda}{\mu}$
Therefore we can calculate $P_{0}, P_{1}, P_{2}, \ldots P_{n}$.

Note that that the inputs are λ, μ and c
And for M/M/I model, $\mathrm{c}=\mathrm{I}$
Hence If we know p, then we can find out the expression for P_{0} , $P_{1} \ldots P_{n}$
we are also interested in the expressions for W_{s}, W_{q}, L_{s} and L_{q} in terms of $\mathrm{P}_{0}, \mathrm{P}_{1}$, etc,
The expected number of people in the system L_{s} is given as:

$$
\begin{aligned}
L_{s}= & \sum_{j=0}^{\infty} j P_{j}=\sum j p^{j} P_{0} \\
& =P_{0} p \sum j p^{j-1} \\
& =P_{0} p \sum \frac{d}{d_{p}} p^{j}
\end{aligned}
$$

Where $\mathrm{j}=$ the number of people in the system

$$
\begin{gathered}
L_{s}=\sum_{j=0}^{\infty} j P_{j} \\
=\frac{p}{1-p} \\
\mathrm{~L}_{\mathrm{s}}=\mathrm{L}_{\mathrm{q}}+\frac{\lambda}{\mu} \\
\mathrm{Ls}_{=}=\lambda \mathrm{W}_{\mathrm{s}} \\
\mathrm{~L}_{\mathrm{q}}=\lambda \mathrm{W}_{\mathrm{q}} \\
\text {--- Little's Law }
\end{gathered}
$$

