M/M/I model

- Service rate = μ/h
- Arrival rate = λ/h
- System does not take into account the earlier states of the system in order to define the present state of this system. (memoryless property)
- only one event will take place in a small interval of time, h
 - Either arrival or service
- At steady state, we want to know the probability, that the system has certain customers at a point in time
- customer is interested in:
 - $^\circ~~L_s$: length of the system (expected number of people who are actually in the system, including the person who is being served)
 - $^\circ~L_q$: length of the queue (expected number of people who are waiting for service in this system)
 - \circ W_s: waiting time in the system
 - \circ W_q: waiting time in the queue.
- If we derive an expression for one, we can derive an expression for all
- We are interestee in expression for the steady state probabilities that there are 0, 1, 2, 3.... People in the system. i.e. P₀, P₂, P₃, etc

 Probability that there are n people in the system at time t+h is given as:

• $P_n(t+h) = P_{n-1}(t)$ * Probability of I arrival and no service + $P_{n+1}(t)$ * probability of no arrival and one service + $P_n(t)$ * probability of no arrival and no service) • Note that we are not considering other probabilities due to the assumption that in a small interval, only one event can take place e.g we will not consider probability of one arrivan and one service or probability of 2 arrivals)

•P(one arrival = λh) \rightarrow P(no arrival) = $1 - \lambda h$

•P(one service = μh) \rightarrow P(no service) = 1 - μh

 $P_{n}(t+h) = P_{n-1}(t) * \lambda h(1-\mu h) + P_{n+1}(t)\mu h(1-\lambda h) + P_{n}(t)(1-\lambda h)(1-\mu h)$

$$\begin{split} \mathsf{P}_{\mathsf{n}}(\mathsf{t}+\mathsf{h}) &= \mathsf{P}_{\mathsf{n}-\mathsf{l}}(\mathsf{t})^*(\lambda \mathsf{h} - \lambda \mu \mathsf{h}^2) + \mathsf{P}_{\mathsf{n}+\mathsf{l}}(\mathsf{t})(\mu \mathsf{h} - \lambda \mu \mathsf{h}^2) + \\ \mathsf{P}_{\mathsf{n}}(\mathsf{t})(1 - \mu \mathsf{h} - \lambda \mathsf{h} + \lambda \mu \mathsf{h}^2) \end{split}$$

We leave out the higher order atoms i.e $\lambda \mu h^2 = 0$ $P_n(t+h) = P_{n-1}(t) \lambda h + P_{n+1}(t) \mu h + P_n(t) (1 - \lambda h - \mu h)$

 $= P_{n-1}(t) \lambda h + P_{n+1}(t) \mu h + P_n(t) - P_n(t) \lambda h - P_n(t) \mu h$ $P_n(t+h) - P_n(t) = P_{n-1}(t) \lambda h + P_{n+1}(t) \mu h - h P_n(t) (\lambda + \mu)$

Dividing through by h

$$\label{eq:product} \begin{split} \underline{P_{\underline{n}}(t{+}h) - P_{\underline{n}}(t)}_{h} &= P_{n{-}1}(t) \; \lambda + P_{n{+}1}(t) \mu \mbox{ - } P_{n}(t) (\lambda{+}\mu) \\ h \end{split}$$

Now, for steady state, probability is not going to be time dependent therefore $\frac{P_n(t+h) - P_n(t)}{h} = 0$ h Hence for steady state: $0 = P_{n-1} \lambda + P_{n+1} \mu - P_n (\lambda + \mu)$

• Now,

 Probability of 0 person in the system at time t+h is given as:

• $P_0(t+h) = P_1(t) *$ (probability of no arrival and one service) + $P_0(t) *$ (probability of no arrival and no service)

 $P_0(t+h) = P_1(t)(1-\lambda h)\mu h + P_0(t)(1-\lambda h)1$

(note that probability of no service is 1)

• Expanding and leaving out the higher order $P_0(t+h) = P_1(t)\mu h + P_0(t) - P_0(t)\lambda h$

$$\frac{P_0(t+h) - P_0(t)}{h} = P_1(t)\mu - P_0(t)\lambda$$

At steady state, h = 0 therefore

Recall: From equation (2), we can derive $P_1 = \frac{\lambda}{\mu} P_0$ Substituting in equation (1) $\lambda P_0 + \mu P_2 = (\lambda + \mu)P_1$ $\lambda P_0 + \mu P_2 = \lambda P_1 + \mu P_1$ But $\mu P_1 = \lambda P_0$

 $\lambda P_0 + \mu P_2 = \lambda P_1 + \mu P_1$ But from (2), $\mu P_1 = \lambda P_0$ Hence $\lambda P_0 + \mu P_2 = \lambda P_1 + \lambda P_0$ • $\mu P_2 = \lambda P_1$ • $P_2 = (\frac{\lambda}{u})P_1$ • And we know that $P_1 = \frac{\lambda}{\mu} P_0$

• Therefore $P_2 = (\frac{\lambda}{\mu})^2 P_0$

 ∞

• Let $p = \frac{\lambda}{\mu}$ So we have: $P_1 = pP_0$ $P_{2} = pP_{1} = p^{2}P_{0}$ In a similar manner we derive: $P_3 = pP_2 = p^3P_0$ Hence: $P_n = p^n P_0$

We still don't know the actual values of P_1, P_2, \ldots, P_n Note that they are all dependent on P_0 Hence we need to know the value of P_0 Recall that sum of steady-state probabilities = I Hence $P_0 + P_1 + + P_{\infty} = I$ $P_0 + pP_0 + p^2P_0 + p^3P_0 + \dots + \infty = I$ $P_0(1 + p + p^2 + p^3 + ... + p^{\infty}) = 1$ Note that this is an infinite series and a geometric series We know that the sum to infinite of a geometric series = 1r provided r<l

And $p = \frac{\lambda}{\mu} < I$ for infinite population model

When $p = \frac{\lambda}{\mu} < I$, we can apply the infinite geometric series summation formula I - p = I from which $P_o\left(\frac{1}{1-n}\right) = 1$ $P_{2} = I - p$ Now $p_1 = pP_0 = p(1-p)$ In general terms, $\mathsf{P}_{\mathsf{n}} = p^{\mathsf{n}} \mathsf{P}_{\mathsf{0}} = p^{\mathsf{n}} (\mathsf{I} - p)$ We know that $p = \frac{\lambda}{u}$

Therefore we can calculate $P_0, P_1, P_2, \dots P_n$.

Note that that the inputs are λ , μ and c And for M/M/I model, c=I

Hence If we know *p*, then we can find out the expression for P_0 , P_1 , ..., P_n

we are also interested in the expressions for W_s, W_q, L_s and L_q in terms of P_0, P_1 , etc,

The expected number of people in the system L_s is given as:

$$L_{s} = \sum_{j=0}^{\infty} jP_{j} = \sum jp^{j}P_{0}$$
$$= P_{0}p \sum jp^{j-1}$$
$$= P_{0}p \sum \frac{d}{d_{p}}p^{j}$$

Where j = the number of people in the system

$$L_{s} = \sum_{j=0}^{\infty} jP_{j}$$
$$= \frac{p}{1-p}$$
$$L_{s} = L_{q} + \frac{\lambda}{\mu}$$
$$Ls = \lambda W_{s}$$
$$L_{q} = \lambda W_{q}$$
---- Little's Law