Introduction to C

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

1.6 Machine Languages, Assembly
Languages and High-Level Languages

» Programmers write instructions in various programming
languages, some directly understandable by computers and
others requiring intermediate translation steps.

» Computer languages may be divided into three general
types:

> Machine languages
> Assembly languages
> High-level languages
» Any computer can directly understand only its own
machine language.

» Machine language is the “natural language™ of a computer
and as such is defined by its hardware design.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

<

1.6 Machine Languages, Assembly Languages
and High-Level Languages (Cont.)

» Machine language is often referred to as object code.

» Machine languages generally consist of strings of
numbers (ultimately reduced to 1s and 0s) that instruct
computers to perform their most elementary operations

one at a time.

» Machine languages are machine dependent (i.e., a
particular machine language can be used on only one

type of computer).

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

<

1.6 Machine Languages, Assembly Languages
and High-Level Languages

» Such languages are cumbersome for humans, as illustrated
by the following section of an early machine-language
program that adds overtime pay to base pay and stores the
result in gross pay:

- +1300042774
+1400593419
+1200274027

» Instead of using the strings of numbers that computers
could directly understand, programmers began using
English-like abbreviations to represent elementary
operations.

» These abbreviations formed the basis of assembly

languages.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

<

1.6 Machine Languages, Assembly Languages
and High-Level Languages

» Translator programs called assemblers were developed to
convert early assembly-language programs to machine
language at computer speeds.

» The following section of an assembly-language program
also adds overtime pay to base pay and stores the result in

gross pay:-
- load basepay
add overpay

store grosspay

» Although such code 1s clearer to humans, it’s
Incomprehensible to computers until translated to machine
language.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

<

1.6 Machine Languages, Assembly Languages
and High-Level Languages

» Computer usage increased rapidly with the advent of
assembly languages, but programmers still had to use many
Instructions to accomplish even the simplest tasks.

» To speed the programming process, high-level languages
were developed in which single statements could be written
to accomplish substantial tasks.

» Translator programs called compilers convert high-level
language programs into machine language.

» High-level languages allow programmers to write
Instructions that look almost like everyday English and
contain commonly used mathematical notations.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

<

1.6 Machine Languages, Assembly Languages
and High-Level Languages

» A payroll program written in a high-level language

might contain a statement such as
- grossPay = basePay + overTimePay;

» C, C++, Microsoft’s .NET languages (e.g., Visual
Basic, Visual C++ and Visual C#) and Java are among
the most widely used high-level programming
languages.

» Interpreter programs were developed to execute high-

level language programs directly (without the delay of
compilation), although slower than compiled programs

run.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.7 History of C

» C evolved from two previous languages, BCPL and B.

» BCPL was developed in 1967 by Martin Richards as a
language for writing operating-systems software and
compilers.

» Ken Thompson modeled many features in his B language
after their counterparts in BCPL, and in 1970 he used B to
create early versions of the UNIX operating system at Bell
Laboratories.

» Both BCPL and B were “typeless” languages—every data

item occupied one “word” in memory, and the burden of

typing variables fell on the shoulders of the programmer.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.7 History of C (Cont.)

» The C language was evolved from B by Dennis Ritchie at
Bell Laboratories and was originally implemented on a
DEC PDP-11 computer in 1972.

C initially became widely known as the development
language of the UNIX operating system.

Today, virtually all new major operating systems are written
In C and/or C++.

C is available for most computers.
C Is mostly hardware independent.

With careful design, it’s possible to write C programs that
are portable to most computers.

v

v

v v v

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.7 History of C (Cont.)

» By the late 1970s, C had evolved into what is now referred
to as “traditional C.” The publication in 1978 of Kernighan
and Ritchie’s book, The C Programming Language, drew
wide attention to the language.

» The rapid expansion of C over various types of computers
(sometimes called hardware platforms) led to many
variations that were similar but often incompatible.

» In 1989, the C standard was approved; this standard was
updated in 1999.

» C99 Is a revised standard for the C programming language
that refines and expands the capabilities of C.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

. Portability Tip 1.1
‘ Because C is a hardware-independent, widely available
language, applications written in C can run with little

or no modifications on a wide range of different comput-
er systems.

Siind

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.8 C Standard Library

C programs consist of modules or pieces called functions.

» You can program all the functions you need to form a C program,
but most C programmers take advantage of a rich collection of
existing functions called the C Standard Library.

» Avoid reinventing the wheel.

» Instead, use existing pieces—this is called software
reusability, and it’s a key to the field of object-oriented
programming, as you’ll see when you study C++.

» When programming in C you’ll typically use the following
building blocks:

o C Standard Library functions

> Functions you create yourself

> Functions other people have created and made available to you

v

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.8 C Standard Library (Cont.)

» If you use existing functions, you can avoid reinventing
the wheel.

» In the case of the Standard C functions, you know that
they’re carefully written, and you know that because
you’re using functions that are available on all Standard
C implementations, your programs will have a greater
chance of being portable and error-free.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

=5y. Performance Tip 1.1
o

Using Standard C library functions instead of writing
your own comparable versions can improve program per-
formance, because these functions are carefully written to

perform efficiently.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

=55 Performance Tip 1.2

Using Standard C library functions instead of writing
your own comparable versions can improve program por-
tability, because these functions are used in virtually all
Standard C implementations.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.15 Typical C Program Development
Environment

» C systems generally consist of several parts: a program
development environment, the language and the C
Standard Library.

» C programs typically go through six phases to be
executed (Fig. 1.1).

» These are: edit, preprocess, compile, link, load and
execute.

» Phase 1 consists of editing a file.
» This I1s accomplished with an editor program.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.15 Typical C Program
Development Environment (Cont.)

» Two editors widely used on Linux systems are v1 and
emacs.

» Software packages for the C/C++ integrated program
development environments such as Eclipse and
Microsoft Visual Studio have editors that are integrated
Into the programming environment.

» You type a C program with the editor, make corrections
If necessary, then store the program on a secondary
storage device such as a hard disk.

» C program file names should end with the . C
extension.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.15 Typical C Program

Development Environment (Cont.)

» In Phase 2, the you give the command to compile the
program.

» The compiler translates the C program into machine
language-code (also referred to as object code).

» Ina C system, a preprocessor program executes
automatically before the compiler’s translation phase
begins.

» The C preprocessor obeys special commands called

oreprocessor directives, which indicate that certain

manipulations are to be performed on the program
nefore compilation.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.15 Typical C Program
Development Environment (Cont.)

» These manipulations usually consist of including other
files in the file to be compiled and performing various
text replacements.

» In Phase 3, the compiler translates the C program into
machine-language code.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

Editor

Preprocessor

Compiler

Linker

'

Phase |:

| Programmer creates program
in the editor and stores it on
disk.

.

Phase 2:
¢ Preprocessor program
processes the code.

) Phase 3:

[Compiler creates
object code and stares
it on disk.

N\ Phase 4:

Linker links the object

¢ code with the libraries,
creates an executable file and
/7 stores it on disk.

N

Fig. 1.1 | Typical C development environment. (Part | of 2.)

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

Primary A
Memory

Phase 5:
¢ Loader puts program
in memory.
/
Primary 3
Memory
CPU
Phase 6:

CPU takes each
instruction and

> executes it, possibly
storing new data
values as the program
executes.

. 1.1 | Typical C development environment. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.15 Typical C Program

Development Environment (Cont.)

» The next phase Is called linking.

» C programs typically contain references to functions
defined elsewhere, such as in the standard libraries or in the
private libraries of groups of programmers working on a
particular project.

» The object code produced by the C compiler typically
contains “holes” due to these missing parts.

» Alinker links the object code with the code for the missing
functions to produce an executable image (with no missing
pieces).

» On atypical Linux system, the command to compile and

link a program is called cc (or gcc).

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.15 Typical C Program
Development Environment (Cont.)

» To compile and link a program named we 1 come. c type
- cCc welcome.c

» at the Linux prompt and press the Enter key (or Return
key).

» [Note: Linux commands are case sensitive; make sure that
you type lowercase C’s and that the letters in the filename
are in the appropriate case.]

» If the program compiles and links correctly, a file called
a.out is produced.

» This is the executable image of our we l come.c program.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.15 Typical C Program
Development Environment (Cont.)

» The next phase Is called loading.

» Before a program can be executed, the program must
first be placed in memory.

» This 1s done by the loader, which takes the executable
Image from disk and transfers it to memory.

» Additional components from shared libraries that
support the program are also loaded.

» Finally, the computer, under the control of its CPU,
executes the program one instruction at a time.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.15 Typical C Program
Development Environment (Cont.)

» To load and execute the program on a Linux system,
type . /a.out at the Linux prompt and press Enter.

» Programs do not always work on the first try.

» Each of the preceding phases can fail because of
various errors that we’ll discuss.

» For example, an executing program might attempt to
divide by zero (an illegal operation on computers just
as In arithmetic).

» This would cause the computer to display an error
message.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1

15 Typical C Program

Development Environment (Cont.)

>

You would then return to the edit phase, make the necessary
corrections and proceed through the remaining phases again
to determine that the corrections work properly.

Most C programs input and/or output data.

Certain C functions take their input from stdin (the
standard input stream), which is normally the keyboard, but
stdin can be connected to another stream.

Data Is often output to stdout (the standard output
stream), which is normally the computer screen, but
stdout can be connected to another stream.

When we say that a program prints a result, we normally
mean that the result is displayed on a screen.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

1.15 Typical C Program
Development Environment (Cont.)

» Data may be output to devices such as disks and
printers.

» There iIs also a standard error stream referred to as
stderr.

» The stderr stream (normally connected to the
screen) Is used for displaying error messages.

» It’s common to route regular output data, i.e., stdout,
to a device other than the screen while keeping
stderr assigned to the screen so that the user can be
Immediately informed of errors.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

Common Programming Error 1.1

Errors like division-by-zero occur as a program runs, so
these errors are called runtime errors or execution-time
errors. Divide-by-zero is generally a fatal errov, i.e., an
error that causes the program to terminate immediately
without successfully performing its job. Nonfatal errors
allow programs to run to completion, often producing in-
correct results.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

g{, Good Programming Practice 1.1
Write your C programs in a simple and straightforward

manner. This is sometimes referrved to as KIS (“keep it
simple”). Do not “stretch” the language by trying bizarre

usages.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

S

. Portability Tip 1.2

‘ Although it’s possible to write portable C programs, there
are many problems between different C compilers and
different computers that make portability difficult ro
achieve. Simply writing programs in C does not guaran-

tee portability. You'll often need to deal directly with

computer variations.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

\w, Software Engineering Observation 1.2

XX Read the manuals for the version of C you're mmg
Reference these manuals frequently to be sure you re
aware of the rich collection of C features and that you're
using these features correctly.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

’,‘3 Software Engineering Observation 1.3

8K Your computer and compiler are good teachers. If you're
not sure how a C feature works, write a program with
that feature, compile and run the program and see what

happens.

B v
XS

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

Your First C Program

include <stdio.h>
main(void)

{
printf("Hello, CSCI N305!\n");

}

Try it!

<

w w

How to Compile A C Program <k

Using Linux

gcc firstl.c

» C programs end in the “.c” extension
» The executable file is called a.out

gcc firstl.c

W

<<
How to Execute Your Program

./ a.out

» Type the name of the executable file at the
prompt to run your program

w

ol

