
©1992-2010 by Pearson Education, Inc. All Rights Reserved.

 Programmers write instructions in various programming
languages, some directly understandable by computers and
others requiring intermediate translation steps.

 Computer languages may be divided into three general
types:
◦ Machine languages

◦ Assembly languages

◦ High-level languages

 Any computer can directly understand only its own
machine language.

 Machine language is the “natural language” of a computer
and as such is defined by its hardware design.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Machine language is often referred to as object code.

 Machine languages generally consist of strings of

numbers (ultimately reduced to 1s and 0s) that instruct

computers to perform their most elementary operations

one at a time.

 Machine languages are machine dependent (i.e., a

particular machine language can be used on only one

type of computer).

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Such languages are cumbersome for humans, as illustrated
by the following section of an early machine-language
program that adds overtime pay to base pay and stores the
result in gross pay:

 +1300042774
+1400593419
+1200274027

 Instead of using the strings of numbers that computers
could directly understand, programmers began using
English-like abbreviations to represent elementary
operations.

 These abbreviations formed the basis of assembly
languages.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Translator programs called assemblers were developed to
convert early assembly-language programs to machine
language at computer speeds.

 The following section of an assembly-language program
also adds overtime pay to base pay and stores the result in
gross pay:

 load basepay
add overpay
store grosspay

 Although such code is clearer to humans, it’s
incomprehensible to computers until translated to machine
language.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Computer usage increased rapidly with the advent of

assembly languages, but programmers still had to use many

instructions to accomplish even the simplest tasks.

 To speed the programming process, high-level languages

were developed in which single statements could be written

to accomplish substantial tasks.

 Translator programs called compilers convert high-level

language programs into machine language.

 High-level languages allow programmers to write

instructions that look almost like everyday English and

contain commonly used mathematical notations.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 A payroll program written in a high-level language
might contain a statement such as

 grossPay = basePay + overTimePay;

 C, C++, Microsoft’s .NET languages (e.g., Visual
Basic, Visual C++ and Visual C#) and Java are among
the most widely used high-level programming
languages.

 Interpreter programs were developed to execute high-
level language programs directly (without the delay of
compilation), although slower than compiled programs
run.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 C evolved from two previous languages, BCPL and B.

 BCPL was developed in 1967 by Martin Richards as a

language for writing operating-systems software and

compilers.

 Ken Thompson modeled many features in his B language

after their counterparts in BCPL, and in 1970 he used B to

create early versions of the UNIX operating system at Bell

Laboratories.

 Both BCPL and B were “typeless” languages—every data

item occupied one “word” in memory, and the burden of

typing variables fell on the shoulders of the programmer.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The C language was evolved from B by Dennis Ritchie at
Bell Laboratories and was originally implemented on a
DEC PDP-11 computer in 1972.

 C initially became widely known as the development
language of the UNIX operating system.

 Today, virtually all new major operating systems are written
in C and/or C++.

 C is available for most computers.

 C is mostly hardware independent.

 With careful design, it’s possible to write C programs that
are portable to most computers.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 By the late 1970s, C had evolved into what is now referred

to as “traditional C.” The publication in 1978 of Kernighan

and Ritchie’s book, The C Programming Language, drew

wide attention to the language.

 The rapid expansion of C over various types of computers

(sometimes called hardware platforms) led to many

variations that were similar but often incompatible.

 In 1989, the C standard was approved; this standard was

updated in 1999.

 C99 is a revised standard for the C programming language

that refines and expands the capabilities of C.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 C programs consist of modules or pieces called functions.
 You can program all the functions you need to form a C program,

but most C programmers take advantage of a rich collection of
existing functions called the C Standard Library.

 Avoid reinventing the wheel.

 Instead, use existing pieces—this is called software
reusability, and it’s a key to the field of object-oriented
programming, as you’ll see when you study C++.

 When programming in C you’ll typically use the following
building blocks:
◦ C Standard Library functions

◦ Functions you create yourself

◦ Functions other people have created and made available to you

 ©1992-2010 by Pearson Education, Inc.

All Rights Reserved.

 If you use existing functions, you can avoid reinventing

the wheel.

 In the case of the Standard C functions, you know that

they’re carefully written, and you know that because

you’re using functions that are available on all Standard

C implementations, your programs will have a greater

chance of being portable and error-free.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 C systems generally consist of several parts: a program
development environment, the language and the C
Standard Library.

 C programs typically go through six phases to be
executed (Fig. 1.1).

 These are: edit, preprocess, compile, link, load and
execute.

 Phase 1 consists of editing a file.

 This is accomplished with an editor program.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Two editors widely used on Linux systems are vi and
emacs.

 Software packages for the C/C++ integrated program
development environments such as Eclipse and
Microsoft Visual Studio have editors that are integrated
into the programming environment.

 You type a C program with the editor, make corrections
if necessary, then store the program on a secondary
storage device such as a hard disk.

 C program file names should end with the .c
extension.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 In Phase 2, the you give the command to compile the
program.

 The compiler translates the C program into machine
language-code (also referred to as object code).

 In a C system, a preprocessor program executes
automatically before the compiler’s translation phase
begins.

 The C preprocessor obeys special commands called
preprocessor directives, which indicate that certain
manipulations are to be performed on the program
before compilation.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 These manipulations usually consist of including other

files in the file to be compiled and performing various

text replacements.

 In Phase 3, the compiler translates the C program into

machine-language code.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The next phase is called linking.

 C programs typically contain references to functions
defined elsewhere, such as in the standard libraries or in the
private libraries of groups of programmers working on a
particular project.

 The object code produced by the C compiler typically
contains “holes” due to these missing parts.

 A linker links the object code with the code for the missing
functions to produce an executable image (with no missing
pieces).

 On a typical Linux system, the command to compile and
link a program is called cc (or gcc).

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 To compile and link a program named welcome.c type
 cc welcome.c

 at the Linux prompt and press the Enter key (or Return

key).

 [Note: Linux commands are case sensitive; make sure that

you type lowercase c’s and that the letters in the filename

are in the appropriate case.]

 If the program compiles and links correctly, a file called

a.out is produced.

 This is the executable image of our welcome.c program.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The next phase is called loading.

 Before a program can be executed, the program must

first be placed in memory.

 This is done by the loader, which takes the executable

image from disk and transfers it to memory.

 Additional components from shared libraries that

support the program are also loaded.

 Finally, the computer, under the control of its CPU,

executes the program one instruction at a time.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 To load and execute the program on a Linux system,

type ./a.out at the Linux prompt and press Enter.

 Programs do not always work on the first try.

 Each of the preceding phases can fail because of

various errors that we’ll discuss.

 For example, an executing program might attempt to

divide by zero (an illegal operation on computers just

as in arithmetic).

 This would cause the computer to display an error

message.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 You would then return to the edit phase, make the necessary
corrections and proceed through the remaining phases again
to determine that the corrections work properly.

 Most C programs input and/or output data.

 Certain C functions take their input from stdin (the
standard input stream), which is normally the keyboard, but
stdin can be connected to another stream.

 Data is often output to stdout (the standard output
stream), which is normally the computer screen, but
stdout can be connected to another stream.

 When we say that a program prints a result, we normally
mean that the result is displayed on a screen.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Data may be output to devices such as disks and

printers.

 There is also a standard error stream referred to as
stderr.

 The stderr stream (normally connected to the

screen) is used for displaying error messages.

 It’s common to route regular output data, i.e., stdout,

to a device other than the screen while keeping

stderr assigned to the screen so that the user can be

immediately informed of errors.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

3

3

include <stdio.h>

main(void)

{

 printf(“Hello, CSCI N305!\n”);

}

Try it!

3

4

gcc first1.c

 C programs end in the “.c” extension
 The executable file is called a.out

 gcc first1.c

3

5

./a.out

 Type the name of the executable file at the
prompt to run your program

