
Automata theory and formal languages

Nondeterminism

• Adapted from the work of Andrej Bogdanov

Example from last time

0

1

…

…

…

…

qe

q0

q1

q00

q10

q01

q11

q000

q001

q101

q111

0

1

0

1

0

1

1

1

1

1

0

• Construct a DFA over alphabet {0, 1} that accepts

those strings that end in 101

• Sketch of answer:

Would be easier if…

• Suppose we could guess when the string we are

reading has only 3 symbols left

• Then we could simply look for the sequence 101

and accept if we see it

qdie

1 0 1 3 symbols left

This is not a DFA!

Nondeterminism

• Nondeterminism is the ability to make guesses, which

we can later verify

• Informal nondeterministic algorithm for language of

strings that end in 101:

1. Guess if you are approaching end of input

2. If guess is yes, look for 101 and accept if you see it

3. If guess is no, read one more symbol and go to step 1

Nondeterministic finite automaton

• This is a kind of automaton that allows you to make

guesses

• Each state can have zero, one, or more transitions

out labeled by the same symbol

1 0 1

0, 1

q0 q1 q2 q3

Semantics of guessing

1 0 1

0, 1

q0 q1 q2 q3

• State q0 has two transitions labeled 1

• Upon reading 1, we have the choice of staying in q0 or

moving to q1

Semantics of guessing

1 0 1

0, 1

q0 q1 q2 q3

• State q1 has no transition labeled 1

• Upon reading 1 in q1, we die; upon reading 0, we

continue to q2

Semantics of guessing

1 0 1

0, 1

q0 q1 q2 q3

• State q3 has no transition going out

• Upon reading anything in q3, we die

Meaning of automaton

1 0 1

0, 1

q0 q1 q2 q3

Guess if you are 3 symbols

away from end of input

If so, guess you will

see the pattern 101

Check that you are at

the end of input

Formal definition

• A nondeterministic finite automaton (NFA) is a

5-tuple (Q, S, d, q0, F) where

– Q is a finite set of states

– S is an alphabet

– d: Q × S → subsets of Q is a transition function

– q0  Q is the initial state

– F  Q is a set of accepting states (or final states).

• Only difference from DFA is that output of d is a set

of states

Example

1 0 1

0, 1

q0 q1
q2 q3

alphabet S = {0, 1}

start state Q = {q0, q1, q2, q3}

initial state q0

accepting states F = {q3}

st
at

e
s

inputs

0 1

q0

q1

q2

{q0, q1}

transition function d:

q3

{q0}

{q2}







{q3}



Language of an NFA

The language of an NFA is the set of all strings for

which there is some path that, starting from the

initial state, leads to an accepting state as the

string is read left to right.

1 0 1

0, 1

q0 q1 q2 q3

• Example

– 1101 is accepted, but 0110 is not

NFAs are as powerful as DFAs

• Obviously, an NFA can do everything a DFA can do

• But can it do more?

NFAs are as powerful as DFAs

• Obviously, an NFA can do everything a DFA can do

• But can it do more?

• Theorem

A language L is accepted by some DFA if and

only if it is accepted by some NFA.

NO!

Proof of theorem

• To prove the theorem, we have to show that for

every NFA there is a DFA that accepts the same

language

• We will give a general method for simulating any NFA

by a DFA

• Let’s do an example first

Simulation example

1 0

0, 1

q0 q1 q2 NFA:

DFA: 1 q0 q0 or q1

1

q0 or q2

1

0 0

0

General method

NFA DFA

states q0, q1, …, qn

 q0}, {q1}, {q0,q1}, …, {q0,…,qn}

one for each subset of states in the NFA

initial state q0 q0}

transitions d d’({qi1,…,qik}, a) =

 d(qi1, a) ∪…∪ d(qik, a)

accepting

states

F  Q F’ = {S: S contains some state in F}

Proof of correctness

• Lemma

• Proof by induction on n

• At the end, the DFA accepts iff it is in a state that

contains some accepting state of NFA

• By lemma, this is true iff the NFA can reach an

accepting state

After reading n symbols, the DFA is in state

{qi1,…,qik} if and only if the NFA is in one of the

states qi1,…,qik

Exercises

• Construct NFAs for the following languages over the

alphabet {a, b, …, z}:

– All strings that contain eat or sea or easy

– All strings that contain both sea and tea

– All strings that do not contain fool

