
1

ASSEMBLY LANGUAGE

INSTRUCTION SET

This is a set of predefined operation called OP-CODES that a microprocessor is designed

to recognize and perform. Each type of microprocessor has a unique instruction set. A

typical assembly language machine instruction consists of 4 fields that is Label,

Mnemonics (OP-CODE), Operand field and Comment field. The assembler ignore

comment field but translates the other 3 fields.

 1 2 3 4

LABEL MNEMONIC OPERAND(S) COMMENT

LABEL: Serves as identification for the statements it precedes. It is not mandatory to

precede instruction in assembly language by line number. Any instruction that requires

identification is proceeded by identification name known as label.

A label is made up of alphanumeric characters not more than 6, the first of which must

be a letter. During assembly, the assembler it replaces the name by the memory address

of the first bytes of the instruction object code it precedes.

OPERAND(S): This field contains the operands that will be operated on by the

preceding OP-CODE. Operations may require one or two operands, MONADIC requires

one operand while DIADIC requires two operands.

COMMENT: This field contains clarifying information on instruction or a group of

instructions. It is information to the user, it neither generated object code nor serve as

directive to the assembly. Only field 2 is always mandatory to be present in any

machine instruction except in a line entirely devoted to comment.

Label is separated from mnemonics by (:) colon immediately after the label name,

otherwise the field is left blank. The Mnemonics field is separated from the operand field

by at least a space (blank). If operand field contain more than one operand are separated

by comma from one another, but if the operand is separated from comment by a

semicolon (;) symbol.

3.1 INSTRUCTION FORMAT

Any instruction or data word must convey the information to operation to be

performed(Op-code) of the address of the memory locations or register containing the

2

data (operand) on which operation is to be performed. Instruction in a CPU are of

different kinds based on the number of operand they contain or require to operate on.

These are as follows:

 Zero Address Format: Instruction that do not require any address or operand. The

operand address is implied. Examples: CLA (which clear the accumulator). STC (set

carry), NOP etc.

One Address Format: A single operand address is specified. The operand lies in the

accumulator and the result is also stored back in the accumulator.

<OP-CODE> Addr 1

Examples: ADD C; ACC  ACC + C

 LDA B; ACC  B

 MUL D; ACC  ACC* D

 Two Address Format: Address of two Operands are specified. The result of the

operation is stored in one of the given operand address. <OP-CODE> Addr 1, Addr 2

Examples: MOV A, R1: R1  A Addr1= source

 SUB R1, R2: R2  R2 – R1 Addr2 = destination

 ADD C, R2: R2  R2 + C

 Three Address Format: Two operand address are specified and the third address is

provided for storing the result. <OP-CODE> Addr 1, Addr2, Addr 3

Examples: MUL A, B, C: C  A*B

 ADD A, B, C: C  A+B

 SUB R1, R2, R3: R3  R1 -R2

3.2 8086/8088 INSTRUCTION SET

The instruction set of 8086 and 8088 have exactly the same instruction set. There are

about 100 functional or generic instructions. The purpose of instruction set is to facilitate

development of efficient program users, it also reflects the power of the underlying

architecture that users can take advantage of while developing programs. Programming

in 8086/8088 assembly language only involves selecting appropriate mnemonics from

3

the instruction set table with the possible addressing modes. Instructions can classified

into the following groups:

 Data Transfer Instructions

 Arithmetic Instructions

 Bit Manipulation Instructions

 String Instructions

 Transfer of Control Instructions

 Process Control Instructions

1. Data Transfer Instruction: There are 14 data transfer instructions that are

responsible for moving single bytes or words between memory and registers, between

registers and between register AL or AX and I/O ports. Included in these categories are

the stack manipulation, instructions for transferring flag contents and instructions for

loading segment registers. They are:

MOV XLAT LDS PUSHF

PUSH IN LES POPF

POP OUT LAHF

XCHG LEA SAHF

General Purpose Transfer Instruction:

MOV dst, src; move a byte or word operand from source to destination dst = segment

register, register ;or memory operand src = memory, register, segment register.

Example: MOV AX, [BX], MOV array [si], a1.

PUSH sr; Increment SP (stack pointer) register by 2, move then a word operand

from source to the stack. src = register, memory operand, segment register.

Examples: PUSH DX, PUSH ES, PUSH return_code [SI]

POP dest; Transfer a word operand from the current top of the stack, TOS, to

destination, then decrement SP by 2. SP always points to the TOS dst = register, segment

register, memory operand.

Examples: POP DX, POP, mem_label POP DS.

XCHG dst, scr; Exchange a byte or word operand content of the source with that

of the destination dst = register, memory, src = memory, register.

Examples: XCHG semaphore ax, XCHG dl ch, XCHG ax, bx.

4

XLAT src_tablel; Use the contents of AL register as an index into a table whose

base address is pointed to by register BX. It has the effect of translating from one code to

another code.

Examples: MOV al 30, LEA BX, EBCDIC_table, XLAT EBCDIC_table [AL]

IN dst, src ; Transfer a byte or word from an input port source to destination

accumulator dst = AL for btyes transfer or AX for word transfer, src number.

Examples: IN al OFFEAH, IN ax, dx.

OUT dst, scr; Transfers a byte or word from register to output port address. dst =

out_port_number. Src = for byte transfer or AX for word transfer.

Examples: OUT 44, ax , OUT dx, al

Address Object Transfer Instructions

These instructions take the address of a variable rather than its contents or value.

LEA dst, src; Load Effect Address, transfer the offset address of a source operand to

destination operand.

Examples: LEA BX, EBDCDIC_table, LEA BX, [BP+DI].

LDS dst, src; Load pointer using DS, transfers a 32 bits pointer variable from the

source to destination operand and segment register DS.dst = DS: 16 bit general register

src = 32 bit memory operand.

LDS S1, TABLE; where SI = offset address of TABLE, DS = higher_word of

TABLE

LDS dest, src; Load pointer using ES

Example: LES D1, TABLE2

Flag Transfer Instructions:

LAHF; Load register AH from the processors flag, it copies SF, ZF, AF, PF and

CF flag into bits 7, 6, 4, 2 and 0 respectively to register AH.

SAHF; Store register AH into processor flag, it transfers bit 7, 6, 4 2 and 0 from

register AH to SF, ZF, AF, PF and CF respectively. DF, TF and IF are not affected.

PUSHF; Pushes the 16 bit contents of all the processor’s flag onto stack.

POPF; Transfer 16 bit word from TOS to the processor’s flag register.

5

2. Arithmetic Instruction: These are performed on 4 data types: unsigned binary,

signed binary (integer), unsigned packed decimal and unsigned unpacked decimal. These

instruction are: ADD SUBB MUL CWB

 ADC DEC IMUL CWD

 INC NEG AAM AAA CMP DIV

 DAA AAS IDIV SUB DAS AAD

ADD dest, src; Add a byte or word source operand to a destination operand (dst = dst +

src).

Examples: ADD ax, bx , ADD cl, 2

ADC dst, src; Add with carry, same as ADD but the content of carrying is added.

Examples: ADC ax, si ; ADC bx, 256

INC dst; Increment a byte or word operand by 1, dst = dst + 1

Examples: INC bx ; INC [bx +di + alpha]

AAA; ASCII Adjust for Addition. It changes the contents of register AL to a

valid unpacked decimal number.

Examples: Add al , bl. If AL = 32h, BL= 33h

AAA AL = 35h

DAA; Decimal Adjust for Addition corrects the result of two valid packed

operands previously added.

Examples: Add al, bl. If al = 46h, bl = 27h

DAA then al = 73h

SUB dst , src; Subtract a byte or word source operand from hat of destination operand.

dst = dst – src

Examples: SUB ax, bx ; SUB di , [bx + alpha]

SBB dst, src; Subtract with borrow same as SUB but the content of the carry flag is

also subtracted.

Examples: SBB ax , si ; SBB bx , 256

DEC dst; Decrement a byte or word operand by 1

Examples: DEC bx ; DEC [bx + di + alpha]

NEG dst; Negate a byte or word operand performs the 1’s complement.

Examples: NEG dl ; NEC mem_var

6

CMP dst , src; Compare a byte or word source operand with that of the destination.

Examples: CMP ch , 02 ; CMP bl , [si]

AAS; ASCII Adjust for Subtraction. Same as AAA except subtraction takes place.

DAS; Decimal Adjust for Subtraction.

MUL src; Multiply an unsigned byte or word. It multiplies unsigned source

operand and the Accumulator.

Examples: MUL cl → ah: al = al* cl

 MUL bx → dx: ax = ax * bx

IMUL src; Integer multiplication. If integer multiplies a byte or word signed

operand and accumulator.

Examples: IMUL cl ; IMUL rate_byte.

AAM; ASCII Adjust for Multiply. It corrects the result of a previous multiplication.

DIV src ; Divide perform unsigned division of the accumulator by the source

operand.

Examples: DIV cl ; DIV [si + table].

IDIV src ; Perform signed binary division

Examples: IDIV bl ; IDIV [si + divisor_byte]

AAD; ASCII adjust for Division

CWB; Convert byte to word

CWD; Convert word to double word

3. Bit Manipulation: These include Logical Instruction, Shift and Rotate.

Logical Instruction: The instruction sets of typical microprocessor include instruction in

order to perform the Boolean AND, OR, NOT and an EXCLUSIVE-OR operation or bit-

by- bit.

NOT dst; Perform that 1’s complement of a byte or word destination operand.

Examples: NOT ax ; NOT table

AND dst , src; Perform logical AND of a byte or word operand of source with that of

destination dst = dst AND src

Examples: AND al , bl ; AND cx , flag_word.

OR dst, src; Performs logical inclusive OR of a byte or word operand of source with

that of destination dst = dst OR src.

7

Examples: al , bl ; OR cx , flag_word.

XOR dst , src; Performs logical exclusive OR of a byte or word operand of source with

the destination dst = dst XOR src

Examples: XOR al , bl

TEST dst , src; Performs logical And of a byte or word operand of source with that of

destination but does not return the result into the destination it affects only the flags

instead. Set flags = dst AND src.

Examples: TEST si , di ; TEST al , 00100110B

Shift Instructions:

SHL dst, count and SAL dst, count; Both shift left logically (SHL) and shift left

arithmetically (SAL) have the same function and are equivalent. The destination operand

is shift left the number of times specified in COUNT, zero are shift in on the right,

COUNT= 1 or reg CL if count is more than 1

Examples: SHL al , 1 ; SAL di , cl.

SHR dst , count; Shift right logically, zero are shifted in from the left.

Examples: SHR si , 1 ; SHR si, cl

SAR dst , count; Shift right arithmetic same as SHR except that the sign bit i.e.

MSB is shifted in instead of zero, from the left.

Examples: SAR si , cl ; SAR [bx +si + id_byte] , cl

Rotate Instruction:

ROL dst, count; Rotate left into CF a byte or word destination operation by the

number of times specified in COUNT. It shift the leftmost bit into CF and into the

rightmost bit position.

Examples: ROL bx , 1 ; ROL [di +flag_byte] , cl

ROR dst , count; Rotate left into CF, same as ROl except it is the rightmost bit that

is shifted in CF and the leftmost bit position.

Examples: ROR bx , 1 ; ROR [di +flag_byte] , cl

RCL dst , src: Rotate left through carry, it shifts flfom the left the dst operand

including the CF the number of times specified by count. The value of CF is rotated into

LSB of dst.

Examples: RCL bx 1 ; RCL [di +flag_byte] , cl

8

RCR dst , count; Rotate right through carry, same as RCL except the rotation is to

the right.

4. String Manipulation: For string manipulation, the hardware assumes that a source

string is in the current DS (source string) while destination string must be in ES

(destination offset/string).

String Instruction Table

Mnemonics Description

 Repeat for a specified number of iteration value in register

CX.

REPE,

REPZ

The two are the same, Repeat while the ZF=0. The maximum

number of iteration should be specified in register CX

REPNE

REPNZ

Both are the same, Repeat while ZF≠ 0, the maximum

number of iterations should be specified in register CX.

MOVS Moves a string a bytes/ words from location to another in

memory.

SCAS Scan string for specified values

CMPS Compare values in source string with values in

destination string.

LODS Load values from a string to accumulator register.

STOS Store values from accumulator register to a string.

String Instruction Register and Use

Register Use

SI Source String Offset

DI Destination String Offset

CX Repetition Counter

AL Scan value register, source for STOS

AX Destination for LODS

DF DF=0 means auto increment of SI, DI

DF=1 means auto decrement of SI. DI

ZF Scan and compare terminator

A string instruction syntax is one of the following:

repeatprefix STRING_MNEMONIC

repeatprefix string_mnemonicB (byte)

repeatprefix string_mnemonicW (byte)

ES: destination_offset

Seg_reg: source_offset.

9

NOTE:

1. The operand destination_offset and source_offset only indicate the size of the data

object to be processed by the string. The actual values of operands are pointed to by

ES:DI for destination string and DS: SI for the source string.The source operand segment

can be overridden but that of destination, ES reg., cannot be changed

2. The letter B or W appended to the string instruction indicate a byte or word operand.

3. Sting instruction with implicit operand size such as B or W require no further

operands. Those strings instruction without implicit operand size e.g. MOVS must

include destination_offset or/and source_offset operand for the required size information.

SETTING UP STRING OPERATIONS

The general procedure for setting up string operation is as follows:

1. Set up the DF. Use CLD instruction to clear it or STD to set it.

2. Load register CX with the number of desired iterations.

3. Load the starting offset address of the source string into DS:SI and the starting offset

address of the destination string into ES:DI.

4. Choose the appropriate REPEAT_PREFIX instruction.

5. Put the appropriate STRING_MNEMONIC after the prefix.

Repeat Prefix Mnemonics & operand Remarks

REP MOVS dst, src dst = byte/word, the memory

operand ID.src = byte/word

memory operand ID

REP MOVSB

MOVSW

Implicit operand ID, repeat until

reg. CX = 0

REPE

REPNE

SCAS dst dst = byte/word memory operand

reg. AL = scan_value, repeat if ZF

= 1 and CX ≠ 0 for REPE, repeat

if ZF = 0 and CX ≠0 for REPNE.

REPE

REPNE

CMPS dst, src dst = byte/word memory operand

src = byte/word memory operand

repeat if ZF = 1 &CX ≠0 for

REPE, repeat if ZF = 0 & CX≠0

for REPNE .

REPE

CMPSB

Same as CMPS but for byte

operand.

REPNE CMPSW Same as CMPS but for word

operand

10

REP LODS src src = byte/word memory operand

reg. AL = src_operand. Repeat

until CX = 0.

REP LODSB

LODSW

Implicit operand ID same as

LODS for byte

Implicit operand same as LODS

for word

REP STOS dst dst = byte/word memory operand

ID. dst_string = reg AL,

until CX =0

REP STOS B

STOSW

Implicit operand ID same as

STOS for byte

Implicit operands ID same as

STOS for word.

NOTE:

For all string instructions

dst = string_pointer = ES: DI

src = string_pointer = DS : SI

If DF = 0, then DI = DI + 1 or DI = DI +2

For byte or word operand respectively after each string operand.

If DF = 1 then DI = DI – 1 or DI = DI – 2 for byte or word operand respectively after

each string operation.

5. Program Control Instruction: The flow of control depends on the result of

computation. A program can select a particular sequence of instruction to execute based

on the results of computation. It can be classified as follows:

Unconditional Branch instruction: It transfers the control to the specified address

regardless of the status of the computation.

Conditional Branch Instruction: If (Condition) then branch to execute a new instruction

else execute the following instruction.

LDA BEGIN ; Load ‘A’ with [BEGIN]

MVI C, 03 ; C 03

SUB C ; [A]  [A] – [C]

JZ START ; Jump to START if Z= 1

11

MOV A, C ; If Z=) do this

.

.

.

Start HLT ; Half

Subroutine Call Instruction: The Subroutine Calls and Returns from subroutine are

usually handled by two special instruction namely:

Call Instruction: This is of the form CALL (addr) where the parameter (addr) refers to

the address of the first instruction of the subroutine when the instruction is encountered

the current content of the PC are saved in the stack and the PC is loaded with addr.

The current content of the PC provided the address of the instruction that immediately

follows the CALL instructions, this address is also called RETURN ADDRESS because

this is the point where execution of the calling program will take place after existing

from the subroutine.

For example: Consider a main program M and two subroutine P and Q as in Fig 1, the

main program calls subroutine P and this subroutine in turn calls subroutine Q the

expected control flow sequence is as in Fig 2. The parameter MR and PR refers to the

return addresses of the main program M and the subroutine P respectively. When the

main program calls the subroutine P, the subroutine Q, the return address PR is pushed

onto stack and the control is transferred to the subroutine Q. When the subroutine Q

completes its execution, the return address is retrieved from the stack and loaded into the

PC.

;Main Program

……… P…… Q……

……… …… ……

 CALL P CALL Q ……

MR…… PR…… ……

 ……… ……

END RET RET

Main Program Subroutine P Subroutine Q

12

main prog, M is running resume the execution to M at MR
 subroutine is called return to the caller

execute subroutine P resume the execution of P at PR

 subroutine Q is called return ot caller P

executes subroutine Q

6. Input/Output (I/O) Instructions: The I/O operation is defined as the transfer of data

between the microcomputer system and the external word. It is contain in the ROM and

RAM chip. An input instruction allows peripheral to transfer a word to either a register

or the main memory. The output instruction enables a processor to transfer a word into

the buffer register of the peripheral.

There are typically three main ways of transferring data between the microcomputer

system and external devices. They are:

 Programmed (I/O): This technique the microprocessor executes a program to perform

all data transfers between the microcomputer system and the external devices via one or

more registers called I/O ports.

Characteristics: The external devices carry out the function as dictated by the program

inside the microcomputer memory

 Interrupt I/O: Microcomputer can transfer data to or from an external device using the

interrupt I/O in order to accomplish this, the computer uses a pin on the P chip called

the interrupt pin (INT), the external device is connected to this pin. When the device

wants to communicate with the computer, it makes the signal on the interrupt line

HIGH or LOW depending on the microcomputer. In response the microcomputer

completes the current instruction and pushes at least the contents of the current program

counter and may be some other internal registers onto the stack. It then automatically

loads an address into the program counter in order to branch to a subroutine like

programme written by the user. This programme is called interrupt service routine.

This is a programme that the external device wants the microprocessor to execute in

order to transfer data. The last instruction of the service routine is a RETURN instruction

which is the same instruction typically used at the end of the subroutine. This instruction

13

pops the address (which was pushed unto the stack before going to the service routine)

from the stack into the PC. The microcomputer then continues in the main programme

that it had been executing.

 Direct Memory Access (DMA): Programmed Input/Output and interrupt Input/Output

(I/O) provide data transfer between the P and external device. However, there are

various instances when data must be moved between memory and the external devices.

E.g. with a mass storage device like flash drive, one may want to input or output

programs or data to or from the computer RAM. DMA transfers data directly between

the RAM and an Input/Output device without involving the P. Using this technique, the

transfer of 1 byte of data typically requires RAM but DMA is extensively used in

transferring large blocks of data between a peripheral device and the microprocessor

memory. An interface chip called the DMA controller clip is used with the UP for

transferring data via DMA. Since DMA performs data transfer between memory and an

extend device without involving the P, the DMA interface or controller chip must be

able to perform memory READ and WRITE operations in a similar way as the P.

3.3 ADDRESSING AN I/O PORT

Generally, the movement of data from the P between to the I/O device and vice verse is

achieved in 2 ways

a. Standard I/O

b. Memory Mapped I/O

Standard I/O: Typically utilizes a control pin on the P chip commonly called the IO/M

control signal. A HIGH on this pin indicates an I/O operation, whereas a low indicate a

memory operation. The execution of IN and OUT instruction is said to utilize standard

I/O.

Memory-Mapped I/O: Here, the P uses RAM addresses to represent I/O ports. The port

devices are addressed and selected by decoders as if they were memory devices, with

memory-mapped I/O, one uses 3- byte instructions namely LDA and STA as follow:

14

LDA

XX I/O port address 3-byte instruction for inputting

XX mapped into memory a byte into accumulator.

STA

XX I/O port address 3-byte instruction for outputting

XX mapped into memory data from accumulator into

 specified I/O port.

Whereas standard I/O, one typically uses 2-byte instructions namely IN and OUT as

follows:

IN port number 2-byte instruction for inputting

XX data from specified port accumulator.

OUT port number 2-byte instruction for outputting

XX data from accumulator into specified I/O port.

Advantages Disadvantages

In memory mapped I/O, any

instructions which refers to memory

can theoretically be used to read

from or write to a port.

The port data is moved

into the accumulator.

Since the I/O port address are

configured as memory addresses,

one can use all the Ps instruction

that reference memory addresses for

the I/O ports. The means that one

can perform arithmetic and logic

operations and ant other functions on

port data.

Standard I/O in order to

arithmetic and logic

operation, one must move

the port data into the

accumulator.

3-byte instruction such as LDA and

STA are required for inputting and

outputting a byte.

2-byte instructions such

as IN and OUT are used

for INPUTTING OR

OUTPUTTING a byte.

The I/O address space is

smaller and hence

requires a 1 byte address

to specify the I/O

address.

The ports occupy part of the system

memory space. This space is then not

available for storing data or

instructions. Thereby reducing the

maximum size of the memory.

Have a separate address

space for ports and in

accessed directly with the

In and OUT instructions

