
Networking

I Hardware

I Protocols

I Software

Networking Options

Network type maximum bandwidth latency
(Mbits/second) (microsecs)

Fast Ethernet 100 200
Gigabit Ethernet 1000 29–62
Myrinet 2000 2000–4000 2.6 – 3.2
Myrinet 10G 10000 2.2
Infiniband 10000-20000 1-2
10 Gigabit Ethernet 10000 ??

Ethernet is the most cost-effective choice. Ethernet is a
packet-based serial multi-drop network requiring no centralized
control. All network access and arbitration control is performed by
distributed mechanisms.

Ethernet Protocol

I In an Ethernet network, machines use the Carrier Sense
Multiple Access with Collision Detect (CSMA/CD) protocol
for arbitration when multiple machines try to access the
network at the same time.

I If packets collide, then the machines choose a random number
from the interval (0, k) and try again.

I On subsequent collisions, the value k is doubled each time,
making it a lot less likely that a collision would occur again.
This is an example of an exponential backoff protocol.

Ethernet Protocol

I In an Ethernet network, machines use the Carrier Sense
Multiple Access with Collision Detect (CSMA/CD) protocol
for arbitration when multiple machines try to access the
network at the same time.

I If packets collide, then the machines choose a random number
from the interval (0, k) and try again.

I On subsequent collisions, the value k is doubled each time,
making it a lot less likely that a collision would occur again.
This is an example of an exponential backoff protocol.

Ethernet Protocol

I In an Ethernet network, machines use the Carrier Sense
Multiple Access with Collision Detect (CSMA/CD) protocol
for arbitration when multiple machines try to access the
network at the same time.

I If packets collide, then the machines choose a random number
from the interval (0, k) and try again.

I On subsequent collisions, the value k is doubled each time,
making it a lot less likely that a collision would occur again.
This is an example of an exponential backoff protocol.

Ethernet Packets
The Ethernet packet has the format shown below.

Check
Sequence

Frame
DataType

Address Address
Source

2 bits62 bits 6 bytes 6 bytes 2 bytes 16−1500 bytes 4 bytes

level software
Used by higher

Ethernet Packet Format

DestinationPreamble Synch
1010......1010 11

Note that the Maximum Transmission Unit (MTU) is 1500 bytes.
Messages larger than that must be broken into smaller packets by higher
layer network software. Higher end switches accept Jumbo packets (up to
9000 bytes), which can improve the performance significantly.
For many network drivers under Linux, the MTU can be set on the fly
without reloading the driver!
Use the program ethereal or wireshark to watch Ethernet packets on
your network!

Network Topology Design

Ranges of possibilities.

I Shared multi-drop passive cable, or

I Tree structure of hubs and switches, or

I Custom complicated switching technology, or

I One big switch.

Network Topology Options
Hubs and Switches.

I Direct wire. Two machines can be connected directly by a Ethernet
cable (usually a Cat 5e cable) without needing a hub or a switch.
With multiple NICs per machine, we can create networks but then we
need to specify routing tables to allow packets to get through. The
machines will end up doing double-duty as routers.

I Hubs and Repeaters All machines are visible from all machines and
the CSMA/CD protocol is still used. A hub/repeater receives signals,
cleans and amplifies, redistributes to all nodes.

I Switches. Accepts packets, interprets destination address fields and
send packets down only the segment that has the destination node.
Allows half the machines to communicate directly with the other half
(subject to bandwidth constraints of the switch hardware). Multiple
switches can be connected in a tree or sometimes other schemes. The
root switch can become a bottleneck. The root switch can be a
higher bandwidth switch.

Network Topology Options
Hubs and Switches.

I Direct wire. Two machines can be connected directly by a Ethernet
cable (usually a Cat 5e cable) without needing a hub or a switch.
With multiple NICs per machine, we can create networks but then we
need to specify routing tables to allow packets to get through. The
machines will end up doing double-duty as routers.

I Hubs and Repeaters All machines are visible from all machines and
the CSMA/CD protocol is still used. A hub/repeater receives signals,
cleans and amplifies, redistributes to all nodes.

I Switches. Accepts packets, interprets destination address fields and
send packets down only the segment that has the destination node.
Allows half the machines to communicate directly with the other half
(subject to bandwidth constraints of the switch hardware). Multiple
switches can be connected in a tree or sometimes other schemes. The
root switch can become a bottleneck. The root switch can be a
higher bandwidth switch.

Network Topology Options
Hubs and Switches.

I Direct wire. Two machines can be connected directly by a Ethernet
cable (usually a Cat 5e cable) without needing a hub or a switch.
With multiple NICs per machine, we can create networks but then we
need to specify routing tables to allow packets to get through. The
machines will end up doing double-duty as routers.

I Hubs and Repeaters All machines are visible from all machines and
the CSMA/CD protocol is still used. A hub/repeater receives signals,
cleans and amplifies, redistributes to all nodes.

I Switches. Accepts packets, interprets destination address fields and
send packets down only the segment that has the destination node.
Allows half the machines to communicate directly with the other half
(subject to bandwidth constraints of the switch hardware). Multiple
switches can be connected in a tree or sometimes other schemes. The
root switch can become a bottleneck. The root switch can be a
higher bandwidth switch.

Switches
Switches can be managed or unmanaged. Managed switches are more
expensive but they also allow many useful configurations. Here are some
examples.

I Port trunking (a.k.a Cisco EtherChannel). Allows up to 4 ports to
be treated as one logical port. For example, this would allow a 4
Gbits/sec connection between two Gigabit switches.

I Linux Channel Bonding. Channel bonding means to bond together
multiple NICs into one logical network connection. This requires the
network switch to support some form of port trunking. Supported in
the Linux kernel.

I Switch Meshing. Allows up to 24 ports between switches to be
treated as a single logical port, creating a very high bandwidth
connection. useful for creating custom complicated topologies.

I Stackable, High bandwidth Switches. Stackable switches with
special high bandwidth interconnect in-between the switches. For
example, Cisco has 24-port Gigabit stackable switches with a 32
Gbits/sec interconnect. Up to 8 such switches can be stacked
together. All the stacked switches can be controlled by one switch
and managed as a single switch. If the controlling switch fails, the
remaining switches hold an election and a new controlling switch is
elected. Baystack also has stackable switches with a 40 Gbits/sec
interconnect.

Network Interface Cards

I The Ethernet card, also known as the Network Interface Controller
(NIC), contains the Data Link Layer and the Physical Layer (the two
lowest layers of networking). Each Ethernet card has a unique
hardware address that is know as its MAC address (MAC stands for
Media Access Controller). The MAC address is usually printed on the
Ethernet card. The command ifconfig can be used to determine
the MAC address from software.

I NICs with PXE boot support are useful for automated software
installation.

I Another issue to consider is that having multi-processor boards may
cause more load on the network cards in each node. Certain network
cards have dual-network processors in them, making them better
candidates for multi-processor motherboards.

Networking Models

I UUCP (Unix to Unix CoPy). Mostly over telephone lines to
support mail and USENET news network. UUCP does not
support remote login, rpc or distributed file systems.

I The ARPANET Reference Model (ARM) was the network
model that led to the ISO OSI seven layer standardized model.

I ISO Open System Interconnection (OSI). A reference model
for networking prescribes seven layers of network protocols
and strict methods of communication between them. Most
systems implement simplified version of the OSI model. The
ARPANET Reference Model (ARM) can be seen as a
simplified OSI model.

Network Models (contd.)
ISO ARM 4.2 BSD Layers Example

application process user programs/libraries telnet
presentation applications
session sockets sock stream

transport host–host protocols TCP/IP
network network interface network interface Ethernet driver
data link
hardware network hardware network hardware interlan controller

TCP/IP Addresses
I The most prevalent protocol in networks is the Internet Protocol (IP).

There are two higher-level protocols that run on top of the IP
protocol. These are TCP (Transmission Control Protocol) and UDP
(User Datagram Protocol).

I IPv4 protocol has 32-bit addresses while the IPv6 protocol has 128-bit
addresses. IP address range is divided into networks along an address
bit boundary.

I The portion of the address that remains fixed within a network is
called the network address and the remainder is the host address.
The address with all 0’s in the host address, for example 192.168.1.0,
is the network address and cannot be assigned to any machine. The
address with all 1’s in the host address, for example 192.168.1.255, is
the network broadcast address.

I Three IP ranges are reserved for private networks.
I 10.0.0.0 – 10.255.255.255
I 172.16.0.0 – 172.31.255.255
I 192.168.0.0 – 192.168.255.255

These addresses are permanently unassigned, not forwarded by
Internet backbone routers and thus do not conflict with publicly
addressable IP addresses.

TCP/IP Addresses
I The most prevalent protocol in networks is the Internet Protocol (IP).

There are two higher-level protocols that run on top of the IP
protocol. These are TCP (Transmission Control Protocol) and UDP
(User Datagram Protocol).

I IPv4 protocol has 32-bit addresses while the IPv6 protocol has 128-bit
addresses. IP address range is divided into networks along an address
bit boundary.

I The portion of the address that remains fixed within a network is
called the network address and the remainder is the host address.
The address with all 0’s in the host address, for example 192.168.1.0,
is the network address and cannot be assigned to any machine. The
address with all 1’s in the host address, for example 192.168.1.255, is
the network broadcast address.

I Three IP ranges are reserved for private networks.
I 10.0.0.0 – 10.255.255.255
I 172.16.0.0 – 172.31.255.255
I 192.168.0.0 – 192.168.255.255

These addresses are permanently unassigned, not forwarded by
Internet backbone routers and thus do not conflict with publicly
addressable IP addresses.

TCP/IP Addresses
I The most prevalent protocol in networks is the Internet Protocol (IP).

There are two higher-level protocols that run on top of the IP
protocol. These are TCP (Transmission Control Protocol) and UDP
(User Datagram Protocol).

I IPv4 protocol has 32-bit addresses while the IPv6 protocol has 128-bit
addresses. IP address range is divided into networks along an address
bit boundary.

I The portion of the address that remains fixed within a network is
called the network address and the remainder is the host address.
The address with all 0’s in the host address, for example 192.168.1.0,
is the network address and cannot be assigned to any machine. The
address with all 1’s in the host address, for example 192.168.1.255, is
the network broadcast address.

I Three IP ranges are reserved for private networks.
I 10.0.0.0 – 10.255.255.255
I 172.16.0.0 – 172.31.255.255
I 192.168.0.0 – 192.168.255.255

These addresses are permanently unassigned, not forwarded by
Internet backbone routers and thus do not conflict with publicly
addressable IP addresses.

TCP/IP Addresses
I The most prevalent protocol in networks is the Internet Protocol (IP).

There are two higher-level protocols that run on top of the IP
protocol. These are TCP (Transmission Control Protocol) and UDP
(User Datagram Protocol).

I IPv4 protocol has 32-bit addresses while the IPv6 protocol has 128-bit
addresses. IP address range is divided into networks along an address
bit boundary.

I The portion of the address that remains fixed within a network is
called the network address and the remainder is the host address.
The address with all 0’s in the host address, for example 192.168.1.0,
is the network address and cannot be assigned to any machine. The
address with all 1’s in the host address, for example 192.168.1.255, is
the network broadcast address.

I Three IP ranges are reserved for private networks.
I 10.0.0.0 – 10.255.255.255
I 172.16.0.0 – 172.31.255.255
I 192.168.0.0 – 192.168.255.255

These addresses are permanently unassigned, not forwarded by
Internet backbone routers and thus do not conflict with publicly
addressable IP addresses.

Sockets

I A socket is an endpoint of communication.
I A socket in use usually has an address bound to it.
I The nature of the address depends upon the communication domain

of the socket.
I Processes communicating in the same domain use the same address

format.

Typical communication domains:
domain type symbolic name address format

Unix domain AF Unix pathnames
Internet domain AF INET Internet address and port number

Types of Sockets

I Stream sockets. Reliable, duplex, sequenced data streams.
e.g. pipes, TCP protocol.

I Sequenced packet sockets. Reliable, duplex, record
boundaries.

I Datagram sockets. Unreliable, unsequenced, variable size
packets.

I Reliably delivered message sockets.

I Raw sockets. Allows access to TCP, IP or Ethernet protocol.

Socket System Calls

I A socket() system call creates a socket. It returns a socket
descriptor, similar to a file descriptor. The socket descriptor
indexes the open file table.

I For another process to access a socket, it must have a name.
A name is bound to a socket by the bind() system call.

I connect(...) Connects a process to a socket with a
well-known address (e.g. in the AF INET domain, the address
is the IP address and a port number).

I listen(...) Informs the operating system that the process
is willing to accept connections to a socket that has been
bound. Has an argument that lets the operating system know
how many connections to queue up.

I accept(...) Normally a blocking call. When a connection is
made, returns with a new socket id.

I close(...), shutdown(...): Close both or one end of a
socket respectively.

Socket System Calls

I A socket() system call creates a socket. It returns a socket
descriptor, similar to a file descriptor. The socket descriptor
indexes the open file table.

I For another process to access a socket, it must have a name.
A name is bound to a socket by the bind() system call.

I connect(...) Connects a process to a socket with a
well-known address (e.g. in the AF INET domain, the address
is the IP address and a port number).

I listen(...) Informs the operating system that the process
is willing to accept connections to a socket that has been
bound. Has an argument that lets the operating system know
how many connections to queue up.

I accept(...) Normally a blocking call. When a connection is
made, returns with a new socket id.

I close(...), shutdown(...): Close both or one end of a
socket respectively.

Socket System Calls

I A socket() system call creates a socket. It returns a socket
descriptor, similar to a file descriptor. The socket descriptor
indexes the open file table.

I For another process to access a socket, it must have a name.
A name is bound to a socket by the bind() system call.

I connect(...) Connects a process to a socket with a
well-known address (e.g. in the AF INET domain, the address
is the IP address and a port number).

I listen(...) Informs the operating system that the process
is willing to accept connections to a socket that has been
bound. Has an argument that lets the operating system know
how many connections to queue up.

I accept(...) Normally a blocking call. When a connection is
made, returns with a new socket id.

I close(...), shutdown(...): Close both or one end of a
socket respectively.

Socket System Calls

I A socket() system call creates a socket. It returns a socket
descriptor, similar to a file descriptor. The socket descriptor
indexes the open file table.

I For another process to access a socket, it must have a name.
A name is bound to a socket by the bind() system call.

I connect(...) Connects a process to a socket with a
well-known address (e.g. in the AF INET domain, the address
is the IP address and a port number).

I listen(...) Informs the operating system that the process
is willing to accept connections to a socket that has been
bound. Has an argument that lets the operating system know
how many connections to queue up.

I accept(...) Normally a blocking call. When a connection is
made, returns with a new socket id.

I close(...), shutdown(...): Close both or one end of a
socket respectively.

Socket System Calls

I A socket() system call creates a socket. It returns a socket
descriptor, similar to a file descriptor. The socket descriptor
indexes the open file table.

I For another process to access a socket, it must have a name.
A name is bound to a socket by the bind() system call.

I connect(...) Connects a process to a socket with a
well-known address (e.g. in the AF INET domain, the address
is the IP address and a port number).

I listen(...) Informs the operating system that the process
is willing to accept connections to a socket that has been
bound. Has an argument that lets the operating system know
how many connections to queue up.

I accept(...) Normally a blocking call. When a connection is
made, returns with a new socket id.

I close(...), shutdown(...): Close both or one end of a
socket respectively.

Socket System Calls

I A socket() system call creates a socket. It returns a socket
descriptor, similar to a file descriptor. The socket descriptor
indexes the open file table.

I For another process to access a socket, it must have a name.
A name is bound to a socket by the bind() system call.

I connect(...) Connects a process to a socket with a
well-known address (e.g. in the AF INET domain, the address
is the IP address and a port number).

I listen(...) Informs the operating system that the process
is willing to accept connections to a socket that has been
bound. Has an argument that lets the operating system know
how many connections to queue up.

I accept(...) Normally a blocking call. When a connection is
made, returns with a new socket id.

I close(...), shutdown(...): Close both or one end of a
socket respectively.

Client-Server Setup Using Sockets

Server side Client side

socket(...)
bind(...) socket(...)
listen(...) connect(...)
accept(...)
read/write read/write
close/shutdown

TCP/IP and Linux/Unix Networking

I Port numbers in the range 1-255 are reserved in TCP/IP protocols for
well known servers. In addition, Linux/Unix reserve the ports 1-1023
for superuser processes. Ports from 1024 to 65535 are available for
user processes.

I The file /etc/services contains the port numbers for well known
servers. For example:

I port 37 is reserved for getting the time from a system
I port 7 is used for echoing the data sent by a client back
I port 21 is used by the FTP (File Transfer Protocol) client/server
I port 22 is used by SSH (Secure Shell Protocol) client/server
I port 80 is used by the HTTP (HyperText Transfer Protocol) daemon

(which is the web server).

I The configuration directory /etc/xinetd.d/ contains several files,
one per service type, that control the what is provided by the internet
super-daemon xinetd under Linux.

TCP/IP and Linux/Unix Networking

I Port numbers in the range 1-255 are reserved in TCP/IP protocols for
well known servers. In addition, Linux/Unix reserve the ports 1-1023
for superuser processes. Ports from 1024 to 65535 are available for
user processes.

I The file /etc/services contains the port numbers for well known
servers. For example:

I port 37 is reserved for getting the time from a system
I port 7 is used for echoing the data sent by a client back
I port 21 is used by the FTP (File Transfer Protocol) client/server
I port 22 is used by SSH (Secure Shell Protocol) client/server
I port 80 is used by the HTTP (HyperText Transfer Protocol) daemon

(which is the web server).

I The configuration directory /etc/xinetd.d/ contains several files,
one per service type, that control the what is provided by the internet
super-daemon xinetd under Linux.

TCP/IP and Linux/Unix Networking

I Port numbers in the range 1-255 are reserved in TCP/IP protocols for
well known servers. In addition, Linux/Unix reserve the ports 1-1023
for superuser processes. Ports from 1024 to 65535 are available for
user processes.

I The file /etc/services contains the port numbers for well known
servers. For example:

I port 37 is reserved for getting the time from a system
I port 7 is used for echoing the data sent by a client back
I port 21 is used by the FTP (File Transfer Protocol) client/server
I port 22 is used by SSH (Secure Shell Protocol) client/server
I port 80 is used by the HTTP (HyperText Transfer Protocol) daemon

(which is the web server).

I The configuration directory /etc/xinetd.d/ contains several files,
one per service type, that control the what is provided by the internet
super-daemon xinetd under Linux.

Servers

Design types:

I A single-threaded server handles one connection at a time.

I A multi-threaded server accepts connections and passes them
off to their own threads for processing.

I A multi-process server forks off a copy of itself after a
connection to handle the client, while the original server
process goes back to accept further connections.

Servers

Design types:

I A single-threaded server handles one connection at a time.

I A multi-threaded server accepts connections and passes them
off to their own threads for processing.

I A multi-process server forks off a copy of itself after a
connection to handle the client, while the original server
process goes back to accept further connections.

Servers

Design types:

I A single-threaded server handles one connection at a time.

I A multi-threaded server accepts connections and passes them
off to their own threads for processing.

I A multi-process server forks off a copy of itself after a
connection to handle the client, while the original server
process goes back to accept further connections.

Client/Server Examples in C

I Single-threaded server timeserver.c and client
timeclient.c

I Multi-process server: tcpserver.c and client tcpclient.c

I Multi-threaded server: Left as an exercise!

I Note that read/write on sockets is slightly different than
read/write on files. A read/write on a socket may return a
count less than asked for. This is not an error since with
sockets, the buffer in the kernel may be full. We can just keep
calling read/write until the right amount of data has been
read or written.

Single-threaded Time Server Example (C/TCP)

/* appropriate header files */
int main(int argc, char **argv) {

int listenfd, connfd;
char buff[MAXLINE];
time_t ticks;
struct addrinfo hints, *res;

memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE; // fill in my IP for me
getaddrinfo(NULL, "5005", &hints, &res);
listenfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (listenfd < 0) err_quit("Cannot create socket:");
if (bind(listenfd, res->ai_addr, res->ai_addrlen) < 0)

err_quit("Bind error:");
if (listen(listenfd, LISTENQ) < 0)

err_quit("Listen error:");
for (;;) {

connfd = accept(listenfd, (struct sockaddr *) NULL, NULL);
if (connfd < 0) err_ret("Accept error: ");
ticks = time(NULL);
snprintf(buff, sizeof(buff), "%.24s\r\n", ctime(&ticks));
write(connfd, buff, strlen(buff));
close(connfd);

}
}

Time Client Example (C/TCP)

/* appropriate header files */
int main(int argc, char **argv) {

int sockfd, n;
char recvline[MAXLINE + 1];
struct addrinfo hints, *res;

if (argc != 2)
err_quit("Usage: timeclient <hostname>");

memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
getaddrinfo(argv[1], "5005" , &hints, &res);
if ((sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol)) < 0)

err_sys("socket error");
if (connect(sockfd, res->ai_addr, res->ai_addrlen) < 0)

err_sys("connect error");
while ((n = read(sockfd, recvline, MAXLINE)) > 0) {

recvline[n] = 0; /* null terminate */
if (fputs(recvline, stdout) == EOF)

err_sys("fputs error");
}
if (n < 0)

err_sys("read error");
exit(0);

}

Multi-process Server Example (C/TCP)
/* appropriate header files */
const char MESSAGE[] = "Hello World\n";
const int BACK_LOG = 5;
int main(int argc, char **argv)
{

int serverSocket = 0, on = 0, status = 0, childPid = 0;
char *port;
struct addrinfo hints, *res;
if (argc != 2) {

fprintf(stderr, "Usage: %s <port>\n", argv[0]);
exit(1);

}
port = argv[1];
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;
getaddrinfo(NULL, "5005", &hints, &res);
serverSocket = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (serverSocket < 0)

err_quit("Cannot create socket:");
on = 1;
status = setsockopt(serverSocket, SOL_SOCKET, SO_REUSEADDR, (char *)&on, sizeof(on));
if (status == -1) {

perror("setsockopt(...,SO_REUSEADDR, ...)"); exit(1);
}
/* When connection is closed, linger a bit to ensure all data has arrived. */
{ struct linger linger = { 0 };

linger.l_onoff = 1;
linger.l_linger = 30;
status = setsockopt(serverSocket, SOL_SOCKET, SO_LINGER, (char *) &linger, sizeof(linger));
if (status == -1) {

perror("setsockopt(...,SO_LINGER, ...)");
exit(1);

}
}

...

Multi-process Server Example (C/TCP) (contd.)
...

if (bind(serverSocket, res->ai_addr, res->ai_addrlen) < 0) {
err_quit("Bind error:");

} else {
fprintf(stderr, "%s: server bound to port %s\n", argv[0], port);

}
if (listen(serverSocket, BACK_LOG) < 0)

err_quit("Listen error:");
while (1) {

struct sockaddr_in clientName = { 0 };
int slaveSocket, clientLength = sizeof(clientName);
memset(&clientName, 0,sizeof(clientName));
slaveSocket = accept(serverSocket, (struct sockaddr *) &clientName, &clientLength);
if (slaveSocket == -1) err_quit("accept():");

childPid = fork();
switch(childPid) {

case -1: /* fork failed */
err_quit("fork()");

case 0: /* in child */
close(serverSocket);
if (-1 == getpeername(slaveSocket, (struct sockaddr *) &clientName, &clientLength))

err_quit("getpeername()");
else {

printf("Connection request from %s\n", inet_ntoa(clientName.sin_addr));
}

/* Server application specific code goes here. */
write(slaveSocket, MESSAGE, strlen(MESSAGE));
close(slaveSocket);
exit(0);

default: /* in parent */
close(slaveSocket);

}
}
exit(0);

}

Client (C/TCP)
/* appropriate header files */
int main(int argc, char **argv)
{

int clientSocket, status = 0;
int len, i;
struct addrinfo hints, *res;
char buffer[256] = "";
char *remoteHost = NULL;
char *remotePort = NULL;
if (argc != 3) {

fprintf(stderr, "Usage: %s <Serverhost> <serverPort>\n", argv[0]);
exit(1);

}
remoteHost = argv[1];
remotePort = argv[2];

memset(&hints, 0, sizeof(hints));
/* AF_INET is for IPv4, AF_INET6 for IPv6, AF_UNSPEC for either */
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
status = getaddrinfo(remoteHost, remotePort, &hints, &res);
if (status < 0) {

fprintf(stderr, "%s: %s\n", argv[0], gai_strerror(status));
exit(1);

}
clientSocket = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (clientSocket == -1) {

herror("socket()"); exit(1);
}

Client (C/TCP) contd.

...
status = connect(clientSocket, res->ai_addr, res->ai_addrlen);
if (status == -1)

err_quit("Error: connect");

/* Get message from server */
/*

Note that we loop over read since with TCP, we may get a 50 byte
message from the server as a single message or 5 10 byte messages
or 50 1 byte messages depending upon the buffering the network
protocol stack in the kernel.

*/
while ((status = read(clientSocket, buffer, sizeof(buffer)-1)) > 0) {

if (status < 0)
err_quit("read()");

len = strlen(buffer);
for (i=0; i<len; i++)

putchar(buffer[i]);
}
exit(0);

}

Useful Tools
I Use netstat -ni to find information on the network

interfaces.
I Use netstat -rn to see the routing table.
I Use netstat -nap to see the processes that are using

specific interfaces and ports. You need to be superuser to be
able to see complete process information. Nice way of
determining who has a port bound up!

I Use netstat -s to see a summary of network statistics. For
example, netstat -s -udp summarizes all UDP traffic.

I Use /sbin/ifconfig eth0 to get details on the interface
eth0. Running ifconfig without any options gives details on
all interfaces.

I Use ping to check if a machine is alive. Use ping -b with a
network address to find all machines on a local area network.

I Use ethereal or wireshark to watch network packets in real
time! You will need superuser access to be able to use
ethereal or wireshark fully. Great debugging tool.

Useful Tools
I Use netstat -ni to find information on the network

interfaces.
I Use netstat -rn to see the routing table.
I Use netstat -nap to see the processes that are using

specific interfaces and ports. You need to be superuser to be
able to see complete process information. Nice way of
determining who has a port bound up!

I Use netstat -s to see a summary of network statistics. For
example, netstat -s -udp summarizes all UDP traffic.

I Use /sbin/ifconfig eth0 to get details on the interface
eth0. Running ifconfig without any options gives details on
all interfaces.

I Use ping to check if a machine is alive. Use ping -b with a
network address to find all machines on a local area network.

I Use ethereal or wireshark to watch network packets in real
time! You will need superuser access to be able to use
ethereal or wireshark fully. Great debugging tool.

Useful Tools
I Use netstat -ni to find information on the network

interfaces.
I Use netstat -rn to see the routing table.
I Use netstat -nap to see the processes that are using

specific interfaces and ports. You need to be superuser to be
able to see complete process information. Nice way of
determining who has a port bound up!

I Use netstat -s to see a summary of network statistics. For
example, netstat -s -udp summarizes all UDP traffic.

I Use /sbin/ifconfig eth0 to get details on the interface
eth0. Running ifconfig without any options gives details on
all interfaces.

I Use ping to check if a machine is alive. Use ping -b with a
network address to find all machines on a local area network.

I Use ethereal or wireshark to watch network packets in real
time! You will need superuser access to be able to use
ethereal or wireshark fully. Great debugging tool.

Useful Tools
I Use netstat -ni to find information on the network

interfaces.
I Use netstat -rn to see the routing table.
I Use netstat -nap to see the processes that are using

specific interfaces and ports. You need to be superuser to be
able to see complete process information. Nice way of
determining who has a port bound up!

I Use netstat -s to see a summary of network statistics. For
example, netstat -s -udp summarizes all UDP traffic.

I Use /sbin/ifconfig eth0 to get details on the interface
eth0. Running ifconfig without any options gives details on
all interfaces.

I Use ping to check if a machine is alive. Use ping -b with a
network address to find all machines on a local area network.

I Use ethereal or wireshark to watch network packets in real
time! You will need superuser access to be able to use
ethereal or wireshark fully. Great debugging tool.

Client/Server Communication Using Sockets in Java

I A server creates a ServerSocket object for a specific port
and uses the accept() method to wait for a connection.

I The client uses (hostname, port number) pair to locate the
server.

I The server accepts the client’s request and creates a Socket
object for communicating with the client. There is a separate
Socket object created for each client request accepted.

I Now the server and the client can read/write to the streams
associated with the sockets.

I Always open OutputStream before InputStream on a socket
to avoid deadlock and synchronization problems.

Client Example (Java)

try {
Socket server = new Socket("foo.bar.com",1234);
InputStream in = server.getInputStream();
OutputStream out = server.getOutputStream();

out.write(42); // write a byte

//write a newline or carriage return delimited string
PrintWriter pout = new PrintWriter(out, true);
pout.println("Hello!");

//read a byte
Byte response = in.read();

// read a newline or carriage return delimited string
BufferedReader bin = new BufferedReader (new InputStreamReader(in));
String answer = bin.readLine();

//send a serialized Java object
ObjectOutputStream oout = new ObjectOutputStream(out);
oout.writeObject(new java.util.Date());
oout.flush();

server.close();
} catch (IOException e) {}

Server Example (Java)

try { // meanwhile, on foo.bar.com...
ServerSocket listener = new ServerSocket(1234);
while (!finished) {

Socket client = listener.accept(); //wait for connection
InputStream in = client.getInputStream();
OutputStream out = client.getOutputStream();

Byte someByte = in.read(); // read a byte

// read a newline or carriage return delimited string
BufferedReader bin = new BufferedReader (new InputStreamReader(in));
String someString = bin.readLine();

out.write(42); // write a byte
PrintWriter pout = new PrintWriter(out, true);
pout.println("Goodbye!");

//read a serialized Java object
ObjectInputStream oin = new ObjectInputStream(in);
Date date = (Date) oin.readObject();

client.close();
//...

}
listener.close();

} catch (IOException e) {}

TCP examples in Java

I A remote date client. ch15/DateAtHost.java.

I Single-threaded server and client: See TimeServer.java and
TimeClient.java in ch15/Java/tcp/single-threaded/.

I Multi-threaded server and client: See TimeServer.java and
TimeClient.java in ch15/Java/tcp/multi-threaded/.

Remote Date Example (Java)

import java.net.Socket;
import java.io.*;

public class DateAtHost extends java.util.Date {
static int timePort = 37;
static final long offset = 2208988800L; // Seconds from century to

// Jan 1, 1970 00:00 GMT

public DateAtHost(String host, int port) throws IOException {
Socket server = new Socket(host, port);
DataInputStream din = new DataInputStream(server.getInputStream());
int time = din.readInt(); // uses network byte order (big Endian)
server.close();

setTime((((1L << 32) + time) - offset) * 1000);
}
public DateAtHost(String host) throws IOException {

this(host, timePort);
}

// Example usage: java DateAtHost emerald.boisestate.edu
public static void main (String [] args) throws Exception {

System.out.println(new DateAtHost(args[0]));
}

}

Single-threaded time server
import java.io.*;
import java.net.*;
/**

A single-threaded time server in Java.
@author amit

*/
public class TimeServer
{

private InputStream in;
private OutputStream out;
private int port = 5005;
private ServerSocket s;

public static void main (String args[]) {
TimeServer server = new TimeServer();
server.serviceClients();

}

public TimeServer() {
try {

s = new ServerSocket(port);
serviceClients();

} catch (IOException e) {
System.err.println(e);

}
}
...

...
public void serviceClients()
{

Socket sock;

while (true)
{

try {
sock = s.accept();
in = sock.getInputStream();
out = sock.getOutputStream();
System.out.println("Received connect from " +

sock.getInetAddress().getHostAddress());
ObjectOutputStream oout = new ObjectOutputStream(out);
oout.writeObject(new java.util.Date());
oout.flush();
Thread.sleep(4000); //4 secs
sock.close();

} catch (InterruptedException e) {
System.err.println(e);

} catch (IOException e) {
System.err.println(e);

}
}

}
}

Time Client

import java.io.*;
import java.net.*;
import java.util.Date;

public class TimeClient {
public static void main (String args[]) {

if (args.length != 2) {
System.err.println("Usage: java TimeClient <serverhost> <port>");
System.exit(1);

}
String host = args[0];
int port = Integer.parseInt(args[1]);
try {

Socket s = new Socket(host, port);
InputStream in = s.getInputStream();
OutputStream out = s.getOutputStream();
ObjectInputStream oin = new ObjectInputStream(in);
Date date = (Date) oin.readObject();
System.out.println("Time on host "+host+" is "+date);

} catch (IOException e1) {
System.out.println(e1);

} catch (ClassNotFoundException e2) {
System.out.println(e2);

}
}

}

Multi-threaded Time Server
import java.io.*;
import java.net.*;
/** A multi-threaded time server. */
public class TimeServer {

private int port;
ServerSocket ss;
public TimeServer(int port) {

try { ss = new ServerSocket(port);
} catch (IOException e) { System.err.println(e); }

}
public void runServer() {

Socket client;
try {

while (true) {
client = ss.accept();
System.out.println("Received connect from " +

client.getInetAddress().getHostName() + " [" +
client.getInetAddress().getHostAddress() + "] ");

new ServerConnection(client).start();
}

} catch (IOException e) {
System.err.println(e);

}
}
public static void main (String args[]) {

if (args.length < 1) {
System.err.println("Usage: java TimeServer <port>");
System.exit(1);

}
TimeServer server = new TimeServer(Integer.parseInt(args[0]));
server.runServer();

}
}

class ServerConnection extends Thread {
Socket client;
ServerConnection (Socket client) throws SocketException {

this.client = client;
setPriority(NORM_PRIORITY - 1);
System.out.println("Created thread "+this.getName());

}

public void run() {
try {

InputStream in = client.getInputStream();
OutputStream out = client.getOutputStream();
ObjectOutputStream oout = new ObjectOutputStream(out);
oout.writeObject(new java.util.Date());
oout.flush();
client.close();
Thread.sleep(10000);

} catch (InterruptedException e) {
System.out.println(e);

} catch (IOException e) {
System.out.println("I/O error " + e);

}
}

}

Sockets and Security in Java

I The SecurityManager can impose arbitrary restrictions on
on applets and applications as to what hosts they may or may
not talk to, and whether they can listen for connections.

I The web browser allows socket connections only to the host
that served them. Untrusted applets are not allowed to open
server sockets themselves.

I A server could run a proxy that lets the applet communicate
indirectly with anyone it likes.

Object Based Server/Clients

I The client will send a serialized object to the server. This
object represents a request. The server will send an object
back as an reply that represents the response.

I We will use a base class Request for the various kinds of
requests.
public class Request implements
java.io.Serializable
public class DateRequest extends Request

public class WorkRequest extends Request {
public Object execute() {return null;}

}

I The client sends a WorkRequest object to the server to get
the server to perform work for the client. The server calls the
request object’s execute method and returns the resulting
object as a response.

Client Sending WorkRequest Objects

public class MyCalculation extends WorkRequest {
int n;
public MyCalculation(int n) {

this.n = n;
}
public Object execute() {

return new Integer(n * n);
}

}

Client Sending WorkRequest Objects (continued)

import java.net.*;
import java.io.*;
public class Client {
public static void main(String argv[]) {
try {

Socket server = new Socket(argv[0],Integer.parseInt(argv[1]));
ObjectOutputStream out =

new ObjectOutputStream(server.getOutputStream());
ObjectInputStream in =

new ObjectInputStream(server.getInputStream());

out.writeObject(new DateRequest());
out.flush();
System.out.println(in.readObject());

out.writeObject(new MyCalculation(2));
out.flush();
System.out.println(in.readObject());
server.close();

} catch (IOException e) {
System.out.println("I/O error " + e); // I/O error

} catch (ClassNotFoundException e2) {
System.out.println(e2); // Unknown type of response object

}
}
}

Object Server

import java.net.*;
import java.io.*;
public class Server {
public static void main(String argv[]) throws IOException {
ServerSocket ss = new ServerSocket(Integer.parseInt(argv[0]));
while (true)

new ServerConnection(ss.accept()).start();
}

}

Object Server (continued)

class ServerConnection extends Thread {
Socket client;
ServerConnection (Socket client) throws SocketException {

this.client = client;
setPriority(NORM_PRIORITY - 1);

}
public void run() {

try {
ObjectOutputStream out =

new ObjectOutputStream(client.getOutputStream());
ObjectInputStream in =

new ObjectInputStream(client.getInputStream());
while (true) {

out.writeObject(processRequest(in.readObject()));
out.flush();

}
} catch (EOFException e3) { // Normal EOF

try {
client.close();

} catch (IOException e) { }
} catch (IOException e) {

System.out.println("I/O error " + e); // I/O error
} catch (ClassNotFoundException e2) {

System.out.println(e2); // Unknown type of request object
}

}

Object Server (continued)

private Object processRequest(Object request) {
if (request instanceof DateRequest)

return new java.util.Date();
else if (request instanceof WorkRequest)

return ((WorkRequest)request).execute();
else

return null;
}

}

Running the Object Server/Client

I Start the server on one host:
on plainoldearth.net: java Server 1234

I Start the client anywhere on the Internet:
on restaurant.endofuniverse.net: java Client

plainoldearth.net 1234

I Note that the server machine must have all the classes that
the client has in order to be able to execute them on the
client’s behalf. That may be an unreasonable assumption
since you may want to serve many kinds of clients without
having to store all their classes.

Datagram Sockets

I A datagram is a discrete chunk of data transmitted in one
chunk.

I Datagrams are not guaranteed to be delivered, nor are they
guaranteed to arrive in the right order. Even duplicate
datagrams might arrive.

I Datagrams use the UDP protocol, which is significantly more
efficient than the TCP protocol.

I Domain Name Service (DNS) and Network File System (NFS)
use UDP.

Datagram Sockets Example

I See example: UdpServer1.java and UdpClient1.java in
ch15/Java/udp/ex1.

UDP Server
public class UdpServer1
{

private int count;
private DatagramSocket s;
private DatagramPacket packet;

public UdpServer1(int port) {
try {

s = new DatagramSocket(port);
packet = new DatagramPacket(new byte [1024], 1024);

} catch (Exception e) {
System.out.println(e);

}
}

public int getCount() { return count; }

public void runServer() {
count = 0;
try {

while (true) {
s.receive(packet);
s.send(packet); // echo back the datagram
count++;

}
} catch (Exception e) {

System.out.println(e);
}

}
...

UDP Server (contd).
public static void main(String [] args)
{

int port = 0;
if (args.length != 1) {

System.err.println("Usage: java UdpServer1 <port#>");
System.exit(1);

}
port = Integer.parseInt(args[0]);
UdpServer1 server = new UdpServer1(port);
StatsThread stats = new StatsThread(server);
Runtime current = Runtime.getRuntime();
current.addShutdownHook(stats);
server.runServer();

}
}

class StatsThread extends Thread
{

UdpServer1 server;

public StatsThread(UdpServer1 server)
{

this.server = server;
}

public void run()
{

int count = server.getCount();
System.err.println("Number of datagrams received by server: "+count);

}
}

UDP Client
import java.net.*;
import java.io.*;

public class UdpClient1 {

public static void main(String[] args)
{

byte[] data = new byte[1024];
if (args.length != 2) {

System.err.println("Usage: java UdpClient1 <serverhost> <port>");
System.exit(1);

}
String myHost = args[0];
int myPort = Integer.parseInt(args[1]);

try {
InetAddress addr = InetAddress.getByName(myHost);
DatagramPacket packet =

new DatagramPacket(data, data.length, addr, myPort);
DatagramSocket ds = new DatagramSocket();
datagramTest(ds, packet, 2000);
ds.close();

} catch (IOException e) {
System.out.println(e); // Error creating socket

}
}

...

UDP Client

public static void datagramTest(DatagramSocket ds,
DatagramPacket packet,
int count)

{
byte[] temp = new byte[1024];
try {

InetAddress serverAddr = packet.getAddress();
for (int i=0; i<count; i++) {

packet.setData(temp);
ds.send(packet);
ds.receive(packet);
if (packet.getAddress().equals(serverAddr)) {

System.out.println("recv’d datagram #"+i+
" back from server "+
packet.getAddress().getHostName());

} else {
System.out.println("recv’d datagram back"+

" not from server but from "+
packet.getAddress().getHostName()+
" (ignored)");

}
}

} catch (IOException e) {
System.out.println(e); // Error creating socket

}
}

}

Example Network Applications

I How to implement a chat program?

I How to implement a telephone program?

I How to implement a videophone program?

I How to implement a web server?

Example Network Applications

I How to implement a chat program?

I How to implement a telephone program?

I How to implement a videophone program?

I How to implement a web server?

Example Network Applications

I How to implement a chat program?

I How to implement a telephone program?

I How to implement a videophone program?

I How to implement a web server?

Example Network Applications

I How to implement a chat program?

I How to implement a telephone program?

I How to implement a videophone program?

I How to implement a web server?

The HTTP Protocol and Web Servers

I A Web Server implements at least the HTTP protocol. In order to talk
to a Web server, a client program (e.g. a web browser) must speak
the HTTP protocol.

I Details of the HTTP protocol can be found at the home page for the
World Wide Web consortium (www.w3.org).

Requests/Methods in the HTTP Protocol:

GET <pathname> HTTP/x.y (e.g. GET /sample.html HTTP/1.0
HEAD <pathname> (same as GET except only metadata is returned)
POST <string> (the server should accept the entity enclosed in the request)

(useful for running CGI-scripts)
Response from server:

HTTP-Version status-code reason-phrase <CR><LF>

The HTTP Protocol and Web Servers

I A Web Server implements at least the HTTP protocol. In order to talk
to a Web server, a client program (e.g. a web browser) must speak
the HTTP protocol.

I Details of the HTTP protocol can be found at the home page for the
World Wide Web consortium (www.w3.org).
Requests/Methods in the HTTP Protocol:

GET <pathname> HTTP/x.y (e.g. GET /sample.html HTTP/1.0
HEAD <pathname> (same as GET except only metadata is returned)
POST <string> (the server should accept the entity enclosed in the request)

(useful for running CGI-scripts)
Response from server:

HTTP-Version status-code reason-phrase <CR><LF>

Status codes in the HTTP Protocol
Status codes:

200 OK
201 Created

301 Moved permanently
305 Use Proxy
307 Temporary redirect

400 Bad request (bad syntax)
401 Unauthorized
402 Payment required
403 Forbidden
404 Not found

500 Internal server error
501 Not implemented
503 Service unavailable
505 HTTP version not supported

A Tiny Web Server
This web server will serve files without any protection from a system.

import java.net.*;
import java.io.*;
import java.util.*;

public class TinyHttpd {
public static void main(String argv[]) throws IOException {

ServerSocket ss = new ServerSocket(Integer.parseInt(argv[0]));
System.out.println("starting...");
while (true) {

new TinyHttpdConnection(ss.accept()).start();
System.out.println("new connection");

}
}

}

class TinyHttpdConnection extends Thread {
Socket client;
TinyHttpdConnection (Socket client) throws SocketException {

this.client = client;
setPriority(NORM_PRIORITY - 1);

}
}

A Tiny Web Server (contd.)

public void run() {
try {

BufferedReader in = new BufferedReader(
new InputStreamReader(client.getInputStream(), "8859_1"));

OutputStream out = client.getOutputStream();
PrintWriter pout = new PrintWriter(

new OutputStreamWriter(out, "8859_1"), true);
String request = in.readLine();
System.out.println("Request: "+request);

StringTokenizer st = new StringTokenizer(request);
if ((st.countTokens() >= 2) && st.nextToken().equals("GET")) {

if ((request = st.nextToken()).startsWith("/"))
request = request.substring(1);

if (request.endsWith("/") || request.equals(""))
request = request + "index.html";

try {
FileInputStream fis = new FileInputStream (request);
byte [] data = new byte [fis.available()];
fis.read(data);
out.write(data);
out.flush();

} catch (FileNotFoundException e) {
pout.println("404 Object Not Found"); }

} else { pout.println("400 Bad Request");}
client.close();

} catch (IOException e) {System.out.println("I/O error " + e);}
}

Using the Built-In Security Manager
Java has a built-in security manager, which if activated gives the same level of
access as given to applets (that is, not much). The security manager can be
activated with a command line option.
java -Djava.security.manager TinyHttpd
However, we want to give access to create and use sockets. So we create a policy
file (using the tool policytool that comes with the Java toolkit).

grant {
permission java.net.SocketPermission

"*:1024-", "listen,accept,connect";
};

Add the following after the catch for FileNotFoundException.

catch (SecurityException e) { pout.println("403 Forbidden");}

Now, recompile and run the server as follows.

java -Djava.security.manager

-Djava.security.policy=mysecurity.policy TinyHttpd 1234

Adding a Custom Security Manager to TinyHttpd

import java.io.*;

class TinyHttpdSecurityManager extends SecurityManager {
public void checkAccess(Thread g) { };
public void checkListen(int port) { };
public void checkLink(String lib) { };
public void checkPropertyAccess(String key) { };
public void checkAccept(String host, int port) { };
public void checkWrite(FileDescriptor fd) { };
public void checkRead(FileDescriptor fd) { };

public void checkRead(String s) {
if (new File(s).isAbsolute() || (s.indexOf("..") != -1))

throw new SecurityException("Access to file: "+s+" denied.");
}

}
// add the following to the TinyHttpd at the start of the main method
// but after creating the ServerSocket

System.setSecurityManager(new TinyHttpdSecurityManager());

Suggestions for Improvement

I Use a buffer and send large amount of data in several passes.

I Generate linked listings for directories (if no index.html was
found).

I Log all requests in a log file. A sample entry is shown below
(taken from the access log of Apache web server):
203.195.154.123 - - [25/Feb/2001:04:09:48 -0700] "GET

/ efialkow/favicon.ico HTTP/1.1" 404 227

I Allow applets to communicate via proxies.

I Add other kinds of requests (other than GET)

I Use scalable I/O with java.nio package.

Suggestions for Improvement

I Use a buffer and send large amount of data in several passes.

I Generate linked listings for directories (if no index.html was
found).

I Log all requests in a log file. A sample entry is shown below
(taken from the access log of Apache web server):
203.195.154.123 - - [25/Feb/2001:04:09:48 -0700] "GET

/ efialkow/favicon.ico HTTP/1.1" 404 227

I Allow applets to communicate via proxies.

I Add other kinds of requests (other than GET)

I Use scalable I/O with java.nio package.

Suggestions for Improvement

I Use a buffer and send large amount of data in several passes.

I Generate linked listings for directories (if no index.html was
found).

I Log all requests in a log file. A sample entry is shown below
(taken from the access log of Apache web server):
203.195.154.123 - - [25/Feb/2001:04:09:48 -0700] "GET

/ efialkow/favicon.ico HTTP/1.1" 404 227

I Allow applets to communicate via proxies.

I Add other kinds of requests (other than GET)

I Use scalable I/O with java.nio package.

Suggestions for Improvement

I Use a buffer and send large amount of data in several passes.

I Generate linked listings for directories (if no index.html was
found).

I Log all requests in a log file. A sample entry is shown below
(taken from the access log of Apache web server):
203.195.154.123 - - [25/Feb/2001:04:09:48 -0700] "GET

/ efialkow/favicon.ico HTTP/1.1" 404 227

I Allow applets to communicate via proxies.

I Add other kinds of requests (other than GET)

I Use scalable I/O with java.nio package.

Suggestions for Improvement

I Use a buffer and send large amount of data in several passes.

I Generate linked listings for directories (if no index.html was
found).

I Log all requests in a log file. A sample entry is shown below
(taken from the access log of Apache web server):
203.195.154.123 - - [25/Feb/2001:04:09:48 -0700] "GET

/ efialkow/favicon.ico HTTP/1.1" 404 227

I Allow applets to communicate via proxies.

I Add other kinds of requests (other than GET)

I Use scalable I/O with java.nio package.

Suggestions for Improvement

I Use a buffer and send large amount of data in several passes.

I Generate linked listings for directories (if no index.html was
found).

I Log all requests in a log file. A sample entry is shown below
(taken from the access log of Apache web server):
203.195.154.123 - - [25/Feb/2001:04:09:48 -0700] "GET

/ efialkow/favicon.ico HTTP/1.1" 404 227

I Allow applets to communicate via proxies.

I Add other kinds of requests (other than GET)

I Use scalable I/O with java.nio package.

Scalable I/O with java.nio package

I Nonblocking and selectable network communications are used
to create services that can handle very high volumes of
simultaneous client requests.

I Starting one thread per client request can consume a lot of
resources. One strategy is to use nonblocking I/O operations
to manage a lot of communications from a single thread. The
second strategy is to use a configurable pool of threads,
taking advantage of machines with many processors.

I The java.nio package provides selectable channels. A
selectable channel allows for the registration of a special kind
of listener called a selector that can check the readiness of the
channel for operations such as reading and writing or
accepting or creating network connections.

Selectable Channels
I Create a selector object. Selector selector = Selector.open();
I To register one or more channels with the selector, set them to nonblocking

mode.

SelectableChannel channelA = ...;
channelA.configureBlocking(false);

I Then, we register the channels.

int interestOps = SelectionKey.OP_READ | SelectionKey.OP_WRITE;
SelectionKey = key channelA.register(selector, interestOps);

I The possible values of interest ops are: OP READ, OP WRITE, OP CONNECT and
OP ACCEPT. These values can be OR’d together to express interest in one or
more operations.

I Once one or more channels are registered with the Selector, we can perform a
select operations by using one of the select() methods.

int readyCount = selector.select(); //block until one channel is ready
int readyCount = selector.selectNow(); // returns immediately
int readyCount = selector.select(50); // timeout of 50 milliseconds

while (selector.select(50) == 0);

Checking for ready channels

Once select() comes back with a non-zero ready count, then we
can get the set of ready channels from the Selector with the
selectedKeys() method and iterate through them.

Set readySet = selector.selectedKeys();
for (Iterator it = readySet.iterator(); it.hasNext();) {

SelectionKey key = (SelectionKey) it.next();
it.remove(); // remove the key from the ready set
// use the key in the application

}

LargerHttpd

The LargerHttpd is a nonblocking web server that uses
SocketChannels and a pool of threads to service requests.
A single thread executes the main loop that accepts new
connections and checks the readiness of existing client connections
for reading or writing.
Whenever a client needs attention, it places the job in a queue
where a thread from our thread pool waits to service it.

/* appropriate import statemenst */

public class LargerHttpd {
Selector clientSelector;
ClientQueue readyClients = new ClientQueue();

public void run(int port, int threads) throws IOException {
clientSelector = Selector.open();
ServerSocketChannel ssc = ServerSocketChannel.open();
ssc.configureBlocking(false);
InetSocketAddress sa =

new InetSocketAddress(InetAddress.getLocalHost(), port);
ssc.socket().bind(sa);
ssc.register(clientSelector, SelectionKey.OP_ACCEPT);

for (int i=0; i<threads; i++)
new Thread() { public void run() {

while (true) try { handleClient(); } catch (IOException e) {
}

} }.start();

while (true) try {
while (clientSelector.select(50) == 0);
Set readySet = clientSelector.selectedKeys();
for(Iterator it = readySet.iterator(); it.hasNext();) {

SelectionKey key = (SelectionKey)it.next();
it.remove();
if (key.isAcceptable())

acceptClient(ssc);
else {

key.interestOps(0);
readyClients.add(key);

}
}

} catch (IOException e) { System.out.println(e); }
}

...

...
void acceptClient(ServerSocketChannel ssc) throws IOException {

SocketChannel clientSocket = ssc.accept();
clientSocket.configureBlocking(false);
SelectionKey key =

clientSocket.register(clientSelector, SelectionKey.OP_READ);
HttpdConnection client = new HttpdConnection(clientSocket);
key.attach(client);

}

void handleClient() throws IOException {
SelectionKey key = (SelectionKey)readyClients.next();
HttpdConnection client = (HttpdConnection)key.attachment();
if (key.isReadable())

client.read(key);
else

client.write(key);
}

public static void main(String argv[]) throws IOException {
new LargerHttpd().run(Integer.parseInt(argv[0]), 3);

}
}

class HttpdConnection {
static Charset charset = Charset.forName("8859_1");
static Pattern httpGetPattern = Pattern.compile("(?s)GET /?(\\S*).*");
SocketChannel clientSocket;
ByteBuffer buff = ByteBuffer.allocateDirect(64*1024);
String request;
String response;
FileChannel file;
int filePosition;

HttpdConnection (SocketChannel clientSocket) {
this.clientSocket = clientSocket;

}

void read(SelectionKey key) throws IOException {
if (request == null && (clientSocket.read(buff) == -1

|| buff.get(buff.position()-1) == ’\n’))
processRequest(key);

else
key.interestOps(SelectionKey.OP_READ);

}

void processRequest(SelectionKey key) {
buff.flip();
request = charset.decode(buff).toString();
Matcher get = httpGetPattern.matcher(request);
if (get.matches()) {

request = get.group(1);
if (request.endsWith("/") || request.equals(""))

request = request + "index.html";
//System.out.println("Request: "+request);
try {

file = new FileInputStream (request).getChannel();
} catch (FileNotFoundException e) {

response = "404 Object Not Found";
}

} else
response = "400 Bad Request" ;

if (response != null) {
buff.clear();
charset.newEncoder().encode(

CharBuffer.wrap(response), buff, true);
buff.flip();

}
key.interestOps(SelectionKey.OP_WRITE);

}
...

...
void write(SelectionKey key) throws IOException {

if (response != null) {
clientSocket.write(buff);
if (buff.remaining() == 0)

response = null;
} else if (file != null) {

int remaining = (int)file.size()-filePosition;
long got = file.transferTo(filePosition, remaining, clientSocket);
if (got == -1 || remaining <= 0) {

file.close();
file = null;

} else
filePosition += got;

}
if (response == null && file == null) {

clientSocket.close();
key.cancel();

} else
key.interestOps(SelectionKey.OP_WRITE);

}
}

class ClientQueue extends ArrayList {
synchronized void add(SelectionKey key) {

super.add(key);
notify();

}
synchronized SelectionKey next() {

while (isEmpty())
try { wait(); } catch (InterruptedException e) { }

return (SelectionKey)remove(0);
}

}

