
1

Introduction to Object Oriented
Design

2

Overview

 Understand Classes and Objects.

 Understand some of the key
concepts/features in the Object Oriented
paradigm.

 Benefits of Object Oriented Design
paradigm.

3

OOP: model, map, reuse, extend

 Model the real world
problem to user’s
perceive;

 Use similar metaphor
in computational env.

 Construct reusable
components;

 Create new
components from
existing ones.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

4

Examples of Objects

Figure 1.9: Examples of objects

CAR

VDU

BOY GIRL

TREEBOOK

CLOCK

TRIANGLE

5

Classes: Objects with the same
attributes and behavior
Person Objects

Vehicle Objects

Polygon Objects

Abstract Person Class
Attributes:
Operations:

Name, Age, Sex
Speak(), Listen(), Walk()

Into

Abstract Vehicle Class
Attributes:
Operations:

Name, Model, Color
Start(), Stop(), Accelerate()

Into

Abstract
Polygon Class
Attributes:

Operations: Draw(), Erase(), Move()

Vertices, Border,
Color, FillColorInto

Figure 1.12: Objects and classes

6

Object Oriented Paradigm: Features

OOP
Paradigm

Encapsulation

Multiple Inheritance

Genericity

Delegation

Persistence

Polymorphism

Single Inheritance

Data Abstraction

7

Java’s OO Features

OOP
Paradigm

Encapsulation

Multiple Inheritance

Genericity

Delegation

Persistence

Polymorphism

Single Inheritance

Data Abstraction

Java

8

Encapsulation

 It associates the code
and the data it
manipulates into a
single unit; and
keeps them safe from
external interference
and misuse.

OOP
Paradigm

Encapsulation

Multiple Inheritance

Genericity

Delegation

Persistence

Polymorphism

Single Inheritance

Data Abstraction

Data

Functions

9

Data Abstraction

 The technique of
creating new data types
that are well suited to an
application.

 It allows the creation of
user defined data types,
having the properties of
built data types and a set
of permitted operators.

 In Java, partial support.
 In C++, fully supported

(e.g., operator
overloading).

OOP
Paradigm

Encapsulation

Multiple Inheritance

Genericity

Delegation

Persistence

Polymorphism

Single Inheritance

Data Abstraction

10

Abstract Data Type (ADT)

 A structure that contains both data
and the actions to be performed on
that data.

 Class is an implementation of an
Abstract Data Type.

11

Class- Example

class Account {
private String accountName;
private double accountBalance;

public withdraw();
public deposit();
public determineBalance();

} // Class Account

12

Class

 Class is a set of attributes and operations
that are performed on the attributes.

Account

accountName
accountBalance

withdraw()
deposit()
determineBalance()

Student

name
age
studentId

getName()
getId()

Circle

centre
radius

area()
circumference()

13

Objects

 An Object Oriented system is a
collection of interacting Objects.

 Object is an instance of a class.

14

Classes/Objects

Student
:John

:Jill

John and Jill are
objects of class

Student

Circle
:circleA

:circleB

circleA and circleB
are

objects of class
Circle

15

Class

 A class represents a template for several
objects that have common properties.

 A class defines all the properties common
to the object - attributes and methods.

 A class is sometimes called the object’s
type.

16

Object

 Objects have state and classes don’t.
John is an object (instance) of class Student.

name = “John”, age = 20, studentId = 1236

Jill is an object (instance) of class Student.
name = “Jill”, age = 22, studentId = 2345

circleA is an object (instance) of class Circle.
centre = (20,10), radius = 25

circleB is an object (instance) of class Circle.
centre = (0,0), radius = 10

17

Encapsulation

 All information (attributes and methods) in an
object oriented system are stored within the
object/class.

 Information can be manipulated through
operations performed on the object/class –
interface to the class. Implementation is hidden
from the user.

 Object support Information Hiding – Some
attributes and methods can be hidden from the
user.

18

Encapsulation - Example

class Account {
private String accountName;
private double accountBalance;

public withdraw();
public deposit();
public determineBalance();

} // Class Account

Deposit
Withdraw

Determine Balance

Account
balance

messag
e

message

message

19

Data Abstraction

 The technique of creating new data types
that are well suited to an application.

 It allows the creation of user defined data
types, having the properties of built in
data types and more.

20

Abstraction - Example

class Account {
private String accountName;
private double accountBalance;

public withdraw();
public deposit();
public determineBalance();

} // Class Account

Creates a data
type Account

Account acctX;

21

Inheritance

 New data types (classes) can be defined
as extensions to previously defined types.

 Parent Class (Super Class) – Child Class
(Sub Class)

 Subclass inherits
properties from the
parent class.

Parent

Child

Inherited
capability

22

Inheritance - Example

 Example
 Define Person to be a class

 A Person has attributes, such as age, height, gender
 Assign values to attributes when describing object

 Define student to be a subclass of Person
 A student has all attributes of Person, plus attributes of

his/her own (student no, course_enrolled)
 A student has all attributes of Person, plus attributes of

his/her own (student no, course_enrolled)
 A student inherits all attributes of Person

 Define lecturer to be a subclass of Person
 Lecturer has all attributes of Person, plus attributes of

his/her own (staff_id, subjectID1, subjectID2)

23

Inheritance - Example

 Circle Class can be a subclass (inherited
from) of a parent class - Shape

Shape

Circle Rectangle

24

Inheritance - Example

 Inheritance can also have multiple levels.

Shape

Circle Rectangle

GraphicCircle

25

Uses of Inheritance - Reuse

 If multiple classes have common
attributes/methods, these methods can be
moved to a common class - parent class.

 This allows reuse since the implementation is
not repeated.

Example : Rectangle and Circle method have a
common method move(), which requires changing
the centre coordinate.

26

move(newCentre){
centre = newCentre;

}

Uses of Inheritance - Reuse

Circle

centre
radius
area()

circumference()
move(newCentre)

Rectangle

centre
height
width
area()

circumference()
move(newCentre)

move(newCentre){
centre = newCentre;

}

27

Uses of Inheritance - Reuse
Shape

centre

area()
circumference()
move(newCentre)

Rectangle

height
width

area()
circumference()

Circle

radius

area()
circumference()

move(newCentre){
centre = newCentre

}

28

Uses of Inheritance - Specialization

 Specialized behavior can be added to the
child class.

 In this case the behaviour will be
implemented in the child class.
 E.g. The implementation of area() method in

the Circle class is different from the
Rectangle class.

 area() method in the child classes
override the method in parent classes().

29

Uses of Inheritance - Specialization

area(){
return height*width;

}

Circle

centre
radius
area()

circumference()
move(newCentre)

Rectangle

centre
height
width
area()

circumference()
move(newCentre)

area(){
return pi*r^2;

}

30

Uses of Inheritance - Specialization
Shape

centre

area()
circumference()
move(newCentre)

Rectangle

height
width

area()
circumference()

Circle

radius

area()
circumference()

area(); - Not implemented
And left for the child classes
To implement

area(){
return pi*r^2;

}

area(){
return height*width;

}

31

Uses of Inheritance – Common Interface

 All the operations that are supported for
Rectangle and Circle are the same.

 Some methods have common implementation
and others don’t.
 move() operation is common to classes and can be

implemented in parent.
 circumference(), area() operations are significantly

different and have to be implemented in the
respective classes.

 The Shape class provides a common interface
where all 3 operations move(), circumference()
and area().

32

Uses of Inheritance - Extension

 Extend functionality of a class.
 Child class adds new operations to the

parent class but does not change the
inherited behavior.

 E.g. Rectangle class might have a special
operation that may not be meaningful to the
Circle class - rotate90degrees()

33

Uses of Inheritance - Extension
Shape

centre

area()
circumference()
move(newCentre)

Rectangle

height
width
area()
circumference()
rotate90degrees()

Circle

radius

area()
circumference()

34

Uses of Inheritance – Multiple Inheritance

 Inherit properties from more than one
class.

 This is called Multiple Inheritance.

Shape

Circle

Graphics

35

Uses of Multiple Inheritance

 This is required when a class has to
inherit behavior from multiple classes.

 In the example Circle class can inherit
move() operation from the Shape class
and the paint() operation from the
Graphics class.

 Multiple inheritance is not supported in
JAVA but is supported in C++.

36

Uses of Inheritance – Multiple Inheritance

Shape

centre

area()
circumference()
move(newCentre)

Circle

radius

area()
circumference()

GraphicCircle

color

paint()

37

Polymorphism

 Polymorphic which means “many forms” has
Greek roots.
 Poly – many
 Morphos - forms.

 In OO paradigm polymorphism has many
forms.

 Allow a single object, method, operator
associated with different meaning depending
on the type of data passed to it.

38

Polymorphism

 An object of type Circle or Rectangle can be
assigned to a Shape object. The behavior of the
object will depend on the object passed.

circleA = new Circle(); Create a new circle object

Shape shape = circleA;
shape.area(); area() method for circle class will be executed

rectangleA = new Rectangle(); Create a new rectangle object
shape= rectangle;
shape.area() area() method for rectangle will be executed.

39

Polymorphism – Method Overloading

 Multiple methods can be defined with the
same name, different input arguments.

Method 1 - initialize(int a)
Method 2 - initialize(int a, int b)

 Appropriate method will be called based
on the input arguments.
initialize(2) Method 1 will be called.
initialize(2,4) Method 2 will be called.

40

Polymorphism – Operator Overloading

 Allows regular operators such as +, -, *, /
to have different meanings based on the
type.

 E.g. + operator for Circle can re-defined
Circle c = c + 2;

 Not supported in JAVA. C++ supports it.

41

Persistence

 The phenomenon where the object
outlives the program execution.

 Databases support this feature.

 In Java, this can be supported if users
explicitly build object persistency using IO
streams.

42

Why OOP?

 Greater Reliability
 Break complex software projects into small,

self-contained, and modular objects

 Maintainability
 Modular objects make locating bugs easier,

with less impact on the overall project

 Greater Productivity through Reuse!
 Faster Design and Modelling

43

Benefits of OOP..

 Inheritance: Elimination of Redundant
Code and extend the use of existing
classes.

 Build programs from existing working
modules, rather than having to start from
scratch.  save development time and
get higher productivity.

 Encapsulation: Helps in building secure
programs.

44

Benefits of OOP..

 Multiple objects to coexist without any
interference.

 Easy to map objects in problem domain
to those objects in the program.

 It is easy to partition the work in a
project based on objects.

 The Data-Centered Design enables us in
capturing more details of model in an
implementable form.

45

Benefits of OOP..

 Object Oriented Systems can be easily
upgraded from small to large systems.

 Message-Passing technique for
communication between objects make
the interface descriptions with external
systems much simpler.

 Software complexity can be easily
managed.

46

Summary

 Object Oriented Design, Analysis, and Programming is a
Powerful paradigm

 Enables Easy Mapping of Real world Objects to Objects
in the Program

 This is enabled by OO features:
 Encapsulation
 Data Abstraction
 Inheritance
 Polymorphism
 Persistence

 Standard OO Design (UML) and Programming
Languages (C++/Java) are readily accessible.

