DISTRIBUTED SYSTEMS

Principles and Paradigms
Second Edition
ANDREW S. TANENBAUM
MAARTEN VAN STEEN

Chapter 4
Communication

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Layered Protocols (1)

T T

Application Sttty > T
_ | Presentation protocol I
Presentation | = D i) > | 2
Session F S—— Session protocol | > 5
l [
Transport protocol
Transport I R it ROTRIOCO!) > | 4
—_____Network protocol________,
Network | < » I 3
________ Data link protocol _______,
Data link l “ > 2
S Physical protocol _______, >
Physical 1
Network

Figure 4-1. Layers, interfaces, and protocols
In the OSI model.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Layered Protocols (2)

— Data link layer header
— Network layer header

— Transport layer header
— Session layer header

Presentation layer header
|/ ’— Application layer header

layer trailer
e [T

—sy

Bits that actually appear on the network

Figure 4-2. A typical message as it appears on the network.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Middleware Protocols

Application | e e e e L » | 6
Middleware protocol

Middleware [s S > 5
I Transport protocol |

Transport R s > 4
l Network protocol]

Network I I > I 3

________ Data link protocol _______,

Data link < > 2
l Physical protocol I

Physical I > 1

Network

Figure 4-3. An adapted reference model
for networked communication.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Types of Communication

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client / |/
Request \ /

Transmission
interrupt

Storage
facility

Server Time —>

Figure 4-4. Viewing middleware as an intermediate (distributed)
service in application-level communication.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Remote Procedure Call (RPC)

A RPC allows a program to transparently call procedures
located on another machine. No message passing is visible to
the programmer.

A A widely used technique that underlies many distributed
systems.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Conventional Procedure Call

Stack pointer

Main program's Main program's
local variables local variables

nbytes

buf

fd

return address
read's local
variables

(@) (b)

Figure 4-5. (a) Parameter passing in a local procedure call: the
stack before the call to read. (b) The stack while the called
procedure Is active.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Parameter Passing in Procedure Calls

A Call-by-value: The variable is copied to the stack. The original
value is left unchanged

A Call-by-reference: The address of the variable is copied to the
stack so the called procedure modifies the same copy as the
procedure calling

A Call-by-copy/restore: The variable is copied to the stack by the
caller and then copied back after the call, overwriting the
call erds original value
How is call-by-copy/restore different from call-by-reference?

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Client and Server Stubs

Wait for result

ClieNt ———————
7 %
Call remote Return
procedure from call
Request Reply
Server ----—----—----— e—mm e

Call local procedure Time ——>»
and return results

Figure 4-6. Principle of RPC between a client and server program.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Remote Procedure Calls (1)

A remote procedure call occurs in the following
steps:
1.The client procedure calls the client stub in the normal way.

2.The client stub builds a message and calls the local operating
system.

3The clientodos OS sends the me:s
4.The remote OS gives the message to the server stub.

5.The server stub unpacks the parameters and calls the server.

Continued ¢é

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Remote Procedure Calls (2)

A remote procedure call occurs in the following
steps (continued):

6.The server does the work and returns the result to the stub.
7. The server stub packs it in a message and calls its local OS.
8The serveros OS sends the me
9The cli entodos OS gives the me

10.The stub unpacks the result and returns to the client.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Parameter Passing

Passing parameters to RPCs can be tricky since it requires
packing parameters into a message (parameter marshaling) to
be interpreted correctly on another system. For example:

A Machines may use different character codes. EBCDIC versus ASCII
versus Unicode

A Different representation of integers and floating-point numbers
A Different byte addressing: little-endian versus big-endian format

A How to pass reference parameters (like pointers) since an address will be
meaningless on another system? Can we use call-by-copy-restore?

A How to pack types that take less space than a word? For example: a
short or a character.

A How to pack an array?

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Passing Value Parameters (1)

Client machine

Server machine

Client process . Server process
1. Client call to Implementation
dure
procedur of add
_ Server stub 1 s
| k= add(l,]) l Client stub N [k= add(l’J) |
proc: "add" ol 5 proc: "add"”
int: ~ val(i) 2 Stub builds int: val(i)
int: ~ val(j) message int: val(j)
A
proc: "add"
Client OS int: _ val(i) Server OS
_ int: val(j))

6. Stub makes
local call to "add"

5. Stub unpacks
message

4. Server OS
hands message
to server stub

Figure

3. Message is sent

across the network

4-7. The steps involved in a doing a
remote computation through RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Passing Value Parameters (2)

3] (2] (1] 10

- p—— p——— ——

Figure 4-8. (a) The original message on the Pentium.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Passing Value Parameters (3)

2ol
=
AN
=——
Bowd

N
A
1~
s

(b)

Figure 4-8. (a) The original message on the Pentium.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Passing Value Parameters (4)

Figure 4-8. (c) The message after being inverted. The little
numbers in boxes indicate the address of each byte.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Parameter Specification

_ foobar's local
and Stub Generation variables X
y
5
. Z[O]
foobar(char x; float y; int z[5]) =
{ Z[1;
! /3
2[4

(b)
Figure 4-9. (a) A procedure. (b) The corresponding message.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Asynchronous RPC (1)

A Asynchronous RPC: A client immediately continues once the
server accepts the RPC request. The server excutes the RPC
request after the acknowledgement

A Deferred asynchronous RPC: The client calls the server with a
RPC request and the server immmediately acknowledges it.
Later the server does a callback to the client with the result.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Asynchronous RPC (2)

Client Wait for result

/

Call remote
procedure

N

Return
from call

Request

Server Call local procedure 1'me —»
and return results

(@)

Figure 4-10. (a) The interaction between client and
server in a traditional RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Asynchronous RPC (3)

Client Wait for acceptance

/ \
Call remote Return
procedure from call
Request Accept request
Server Call local procedure Time —»

(b)

Figure 4-10. (b) The interaction using asynchronous RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Asynchronous RPC (4)

Wait for Interrupt client
acceptance
Client ol \
/ N
Call remote]f%eturn | o
rocedur rom ca eturn
Scteads results Acknowledge
Accept
Request request
SEIVElr “-serssmacem——n it
Call local procedure \ Time —»
Call client with
one-way RPC

Figure 4-11. A client and server interacting through
two asynchronous RPCs.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

RPC Implementations

A Distributed Computing Environment / Remote
Procedure Calls (DCE/RPC) was commissioned by the
Open Software Foundation, an industry consortium
now renamed as the Open Group. The DCE/RPC
speci fications were adopted
distributed computing, DCOM.

A Open Network Computing Remote Procedure Call
(ONC RPC) is a widely deployed remote procedure
call system. ONC was originally developed by Sun
Microsystems as part of their Network File System
project, and is sometimes referred to as Sun ONC or
Sun RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

Writing a Client
and a Server (1)

Figure 4-12. The steps in writing a client and
a server in DCE RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275

