
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DISTRIBUTED SYSTEMS

Principles and Paradigms
Second Edition

ANDREW S. TANENBAUM

MAARTEN VAN STEEN

Chapter 4

Communication

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Layered Protocols (1)

Figure 4-1. Layers, interfaces, and protocols
in the OSI model.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Layered Protocols (2)

Figure 4-2. A typical message as it appears on the network.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Middleware Protocols

Figure 4-3. An adapted reference model

for networked communication.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Types of Communication

Figure 4-4. Viewing middleware as an intermediate (distributed)

service in application-level communication.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Remote Procedure Call (RPC)

 RPC allows a program to transparently call procedures

located on another machine. No message passing is visible to

the programmer.

 A widely used technique that underlies many distributed

systems.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Conventional Procedure Call

Figure 4-5. (a) Parameter passing in a local procedure call: the

stack before the call to read. (b) The stack while the called

procedure is active.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Parameter Passing in Procedure Calls

 Call-by-value: The variable is copied to the stack. The original

value is left unchanged

 Call-by-reference: The address of the variable is copied to the

stack so the called procedure modifies the same copy as the

procedure calling

 Call-by-copy/restore: The variable is copied to the stack by the

caller and then copied back after the call, overwriting the

caller’s original value

How is call-by-copy/restore different from call-by-reference?

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Client and Server Stubs

Figure 4-6. Principle of RPC between a client and server program.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Remote Procedure Calls (1)

A remote procedure call occurs in the following

steps:

1.The client procedure calls the client stub in the normal way.

2.The client stub builds a message and calls the local operating

system.

3.The client’s OS sends the message to the remote OS.

4.The remote OS gives the message to the server stub.

5.The server stub unpacks the parameters and calls the server.

Continued …

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Remote Procedure Calls (2)

A remote procedure call occurs in the following

steps (continued):

6.The server does the work and returns the result to the stub.

7.The server stub packs it in a message and calls its local OS.

8.The server’s OS sends the message to the client’s OS.

9.The client’s OS gives the message to the client stub.

10.The stub unpacks the result and returns to the client.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Parameter Passing

Passing parameters to RPCs can be tricky since it requires

packing parameters into a message (parameter marshaling) to

be interpreted correctly on another system. For example:

 Machines may use different character codes. EBCDIC versus ASCII

versus Unicode

 Different representation of integers and floating-point numbers

 Different byte addressing: little-endian versus big-endian format

 How to pass reference parameters (like pointers) since an address will be

meaningless on another system? Can we use call-by-copy-restore?

 How to pack types that take less space than a word? For example: a

short or a character.

 How to pack an array?

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Passing Value Parameters (1)

Figure 4-7. The steps involved in a doing a

remote computation through RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Passing Value Parameters (2)

Figure 4-8. (a) The original message on the Pentium.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Passing Value Parameters (3)

Figure 4-8. (a) The original message on the Pentium.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Passing Value Parameters (4)

Figure 4-8. (c) The message after being inverted. The little

numbers in boxes indicate the address of each byte.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Parameter Specification

and Stub Generation

Figure 4-9. (a) A procedure. (b) The corresponding message.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Asynchronous RPC (1)

 Asynchronous RPC: A client immediately continues once the

server accepts the RPC request. The server excutes the RPC

request after the acknowledgement

 Deferred asynchronous RPC: The client calls the server with a

RPC request and the server immediately acknowledges it.

Later the server does a callback to the client with the result.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Asynchronous RPC (2)

Figure 4-10. (a) The interaction between client and

server in a traditional RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Asynchronous RPC (3)

Figure 4-10. (b) The interaction using asynchronous RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Asynchronous RPC (4)

Figure 4-11. A client and server interacting through

two asynchronous RPCs.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

RPC Implementations

 Distributed Computing Environment / Remote

Procedure Calls (DCE/RPC) was commissioned by the

Open Software Foundation, an industry consortium

now renamed as the Open Group. The DCE/RPC

specifications were adopted in Microsoft’s base for

distributed computing, DCOM.

 Open Network Computing Remote Procedure Call

(ONC RPC) is a widely deployed remote procedure

call system. ONC was originally developed by Sun

Microsystems as part of their Network File System

project, and is sometimes referred to as Sun ONC or

Sun RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Writing a Client

and a Server (1)

Figure 4-12. The steps in writing a client and

a server in DCE RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Writing a Client and a Server (2)

Three files output by the IDL compiler:

 A header file (e.g., interface.h, in C terms)

 The client stub

 The server stub

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Binding a Client to a Server (1)

 Registration of a server makes it possible for a

client to locate the server and bind to it

 Server location is done in two steps:

1. Locate the server’s machine

2. Locate the server on that machine

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Binding a Client to a Server (2)

Figure 4-13. Client-to-server binding in DCE.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

RPC style implementations

 Java RMI (Remote Method Invocation)

 XML-RPC and its successor SOAP: An RPC protocol

that uses XML to encode its calls and HTTP as a

transport mechanism

 Microsoft .NET Remoting: offers RPC/RMI facilities for

distributed systems implemented on the Windows

platform

 CORBA provides remote procedure invocation through

an intermediate layer called the object request broker.

 Facebook's Thrift protocol and framework

 Google Protocol Buffers

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Berkeley Sockets

Figure 4-14. The socket primitives for TCP/IP.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

The Message-Passing Interface (1)

Figure 4-15. Connection-oriented communication

pattern using sockets.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

The Message-Passing Interface (2)

Figure 4-16. Some of the most intuitive

message-passing primitives of MPI.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message-Oriented Persistent Communication

Message-Oriented Middleware (MOM) or message-queuing

systems support persistent asynchronous communication.

These systems provide intermediate-term storage capacity for

messages without requiring either the sender or receiver to be

active during the message transmission.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message-Queuing Model (1)

Figure 4-17. Four combinations for loosely-coupled

communications using queues.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message-Queuing Model (2)

Figure 4-18. Basic interface to a queue in a

message-queuing system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

General Architecture of a Message-

Queuing System (1)

Figure 4-19. The relationship between queue-level addressing

and network-level addressing.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

General Architecture of a Message-

Queuing System (2)

Figure 4-20. The

general organization of

a message-queuing

system with routers.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message Brokers

Figure 4-21. The general organization of a message broker

in a message-queuing system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message-queuing versus Email

 Email systems are aimed at primarily supporting end

users while message-queuing systems are usually not.

 Email systems need not provide guaranteed message

delivery, message priorities, logging facilities, efficient

multicasting, load balancing, fault tolerance and so on

for general usage.

 Message queuing systems can be used to implement

email, workflow, groupware and batch processing. But

the most important usage is the integration of a

collection of databases and applications into a

federated system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

IBM’s WebSphere Message-Queuing

System

Figure 4-22. General organization of IBM’s message-queuing

system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Channels

Figure 4-23. Some attributes associated with

message channel agents.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message Transfer (1)

Figure 4-24. The general organization of an MQ queuing network

using routing tables and aliases.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message Transfer (2)

Figure 4-25. Primitives available in the

message-queuing interface.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Data Stream

Figure 4-26. A general architecture for streaming stored

multimedia data over a network.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Streams and Quality of Service

Properties for Quality of Service:

 The required bit rate at which data should be

transported.

 The maximum delay until a session has been

set up

 The maximum end-to-end delay .

 The maximum delay variance, or jitter.

 The maximum round-trip delay.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Enforcing QoS (1)

Figure 4-27. Using a buffer to reduce jitter.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Enforcing QoS (2)

Figure 4-28. The effect of packet loss in (a) non interleaved

transmission and (b) interleaved transmission.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Synchronization Mechanisms (1)

Figure 4-29. The principle of explicit synchronization

on the level data units.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Synchronization Mechanisms (2)

Figure 4-30. The principle of synchronization as

supported by high-level interfaces.

