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Layered Protocols (1)
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Figure 4-1. Layers, interfaces, and protocols
In the OSI model.
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Layered Protocols (2)
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Figure 4-2. A typical message as it appears on the network.
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Middleware Protocols
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Figure 4-3. An adapted reference model
for networked communication.
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Types of Communication
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Figure 4-4. Viewing middleware as an intermediate (distributed)
service in application-level communication.
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Remote Procedure Call (RPC)

= RPC allows a program to transparently call procedures
located on another machine. No message passing is visible to

the programmer.

= A widely used technique that underlies many distributed
systems.
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Conventional Procedure Call
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Figure 4-5. (a) Parameter passing in a local procedure call: the
stack before the call to read. (b) The stack while the called
procedure Is active.
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Parameter Passing in Procedure Calls

= Call-by-value: The variable is copied to the stack. The original
value is left unchanged

= Call-by-reference: The address of the variable is copied to the
stack so the called procedure modifies the same copy as the
procedure calling

= Call-by-copy/restore: The variable is copied to the stack by the
caller and then copied back after the call, overwriting the
caller’s original value
How is call-by-copy/restore different from call-by-reference?
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Client and Server Stubs
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Figure 4-6. Principle of RPC between a client and server program.
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Remote Procedure Calls (1)

A remote procedure call occurs in the following
steps:
1.The client procedure calls the client stub in the normal way.

2.The client stub builds a message and calls the local operating
system.

3.The client's OS sends the message to the remote OS.
4.The remote OS gives the message to the server stub.

5.The server stub unpacks the parameters and calls the server.

Continued ...
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Remote Procedure Calls (2)

A remote procedure call occurs in the following
steps (continued):

6.The server does the work and returns the result to the stub.
7. The server stub packs it in a message and calls its local OS.
8.The server's OS sends the message to the client’s OS.
9.The client’s OS gives the message to the client stub.

10.The stub unpacks the result and returns to the client.
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Parameter Passing

Passing parameters to RPCs can be tricky since it requires
packing parameters into a message (parameter marshaling) to
be interpreted correctly on another system. For example:

= Machines may use different character codes. EBCDIC versus ASCII
versus Unicode

= Different representation of integers and floating-point numbers
= Different byte addressing: little-endian versus big-endian format

= How to pass reference parameters (like pointers) since an address will be
meaningless on another system? Can we use call-by-copy-restore?

= How to pack types that take less space than a word? For example: a
short or a character.

= How to pack an array?
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Passing Value Parameters (1)
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Figure 4-7. The steps involved in a doing a

remote computation through RPC.
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Passing Value Parameters (2)
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Figure 4-8. (a) The original message on the Pentium.
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Passing Value Parameters (3)
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Figure 4-8. (a) The original message on the Pentium.
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Passing Value Parameters (4)
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Figure 4-8. (c) The message after being inverted. The little
numbers in boxes indicate the address of each byte.
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Parameter Specification
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Figure 4-9. (a) A procedure. (b) The corresponding message.
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Asynchronous RPC (1)

= Asynchronous RPC: A client immediately continues once the

server accepts the RPC request. The server excutes the RPC
request after the acknowledgement

= Deferred asynchronous RPC: The client calls the server with a
RPC request and the server immmediately acknowledges it.
Later the server does a callback to the client with the result.
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Asynchronous RPC (2)
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Figure 4-10. (a) The interaction between client and
server in a traditional RPC.
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Asynchronous RPC (3)
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Figure 4-10. (b) The interaction using asynchronous RPC.
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Asynchronous RPC (4)
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Figure 4-11. A client and server interacting through
two asynchronous RPCs.
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RPC Implementations

* Distributed Computing Environment / Remote
Procedure Calls (DCE/RPC) was commissioned by the
Open Software Foundation, an industry consortium
now renamed as the Open Group. The DCE/RPC
specifications were adopted in Microsoft’'s base for
distributed computing, DCOM.

= Open Network Computing Remote Procedure Call
(ONC RPC) is a widely deployed remote procedure
call system. ONC was originally developed by Sun
Microsystems as part of their Network File System
project, and is sometimes referred to as Sun ONC or
Sun RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5



Writing a Client

and a Server (1) sooni
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Figure 4-12. The steps in writing a client and
a server in DCE RPC.
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Writing a Client and a Server (2)

Three files output by the IDL compiller:

= A header file (e.g., interface.h, in C terms)
= The client stub
= The server stub
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Binding a Client to a Server (1)

= Registration of a server makes it possible for a
client to locate the server and bind to it

= Server location Is done In two steps:
1. Locate the server's machine

2. Locate the server on that machine
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Binding a Client to a Server (2)
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Figure 4-13. Client-to-server binding in DCE.
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RPC style Iimplementations

Java RMI (Remote Method Invocation)

XML-RPC and its successor SOAP: An RPC protocol
that uses XML to encode its calls and HTTP as a
transport mechanism

Microsoft .NET Remoting: offers RPC/RMI facilities for
distributed systems implemented on the Windows
platform

CORBA provides remote procedure invocation through
an intermediate layer called the object request broker.

Facebook's Thrift protocol and framework

Google Protocol Buffers
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Berkeley Sockets

Primitive Meaning

Socket Create a new communication end point

Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

Figure 4-14. The socket primitives for TCP/IP.
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The Message-Passing Interface (1)
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Figure 4-15. Connection-oriented communication
pattern using sockets.
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The Message-Passing Interface (2)

Primitive Meaning
MPI_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts
MPI_sendrecv | Send a message and wait for reply
MPI_isend Pass reference to outgoing message, and continue
MPI _issend Pass reference to outgoing message, and wait until receipt starts
MPI _recv Receive a message; block if there is none
MPI _irecv Check if there is an incoming message, but do not block

Figure 4-16. Some of the most intuitive
message-passing primitives of MPI.
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Message-Oriented Persistent Communication

Message-Oriented Middleware (MOM) or message-queuing
systems support persistent asynchronous communication.
These systems provide intermediate-term storage capacity for
messages without requiring either the sender or receiver to be
active during the message transmission.
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Message-Queuing Model (1)
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Figure 4-17. Four combinations for loosely-coupled
communications using gueues.
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Message-Queuing Model (2)

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block
Notify Install a handler to be called when a message is put into the specified queue

Figure 4-18. Basic interface to a queue in a
message-queuing system.
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General Architecture of a Message-

Queuing System (1)
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Figure 4-19. The relationship between gueue-level addressing
and network-level addressing.
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General Architecture of a Message-

Queuing System (2)
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Message Brokers
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Figure 4-21. The general organization of a message broker
IN a message-queuing system.
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Message-queuing versus Email

= Emall systems are aimed at primarily supporting end
users while message-queuing systems are usually not.

= Emall systems need not provide guaranteed message
delivery, message priorities, logging facilities, efficient
multicasting, load balancing, fault tolerance and so on
for general usage.

= Message queuing systems can be used to implement
email, workflow, groupware and batch processing. But
the most important usage is the integration of a
collection of databases and applications into a
federated system.
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IBM's WebSphere Message-Queuing
System
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Figure 4-22. General organization of IBM's message-queuing
system.
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Channels

Attribute Description
Transport type Determines the transport protocol to be used
FIFO delivery Indicates that messages are to be delivered in the order they are sent

Message length

Maximum length of a single message

Setup retry count

Specifies maximum number of retries to start up the remote MCA

Delivery retries

Maximum times MCA will try to put received message into queue

Figure 4-23. Some attributes associated with

message channel agents.
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Message Transfer (1)

Alias table Routing table
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Figure 4-24. The general organization of an MQ gqueuing network
using routing tables and aliases.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5



Message Transfer (2)

Primitive Description

MQopen Open a (possibly remote) queue

MQclose | Close a queue

MQput Put a message into an opened queue

MQget Get a message from a (local) queue

Figure 4-25. Primitives available in the
message-queuing interface.
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Data Stream
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Figure 4-26. A general architecture for streaming stored
multimedia data over a network.
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Streams and Quality of Service

Properties for Quality of Service:

= The required bit rate at which data should be
transported.

= The maximum delay until a session has been
set up

= The maximum end-to-end delay .

* The maximum delay variance, or jitter.

= The maximum round-trip delay.
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Enforcing QoS (1)

41

Packet departs source 2 6([7(|8

Packet arrives at buffer 1 31415 IE| 7 8

Packet removed from buffer < Time In buffer > 4 @8
I N AN NN NN MO M N B
15

N

Eap 1n playback
| | |

20

0 5 10
Time (sec)

Figure 4-27. Using a buffer to reduce |jitter.
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Enforcing QoS (2)
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Figure 4-28. The effect of packet loss in (a) non interleaved
transmission and (b) interleaved transmission.
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Synchronization Mechanisms (1)
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Figure 4-29. The principle of explicit synchronization
on the level data units.
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Synchronization Mechanisms (2)
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Figure 4-30. The principle of synchronization as
supported by high-level interfaces.
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