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Layered Protocols (1)
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Figure 4-1. Layers, interfaces, and protocols
In the OSI model.
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Layered Protocols (2)
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Figure 4-2. A typical message as it appears on the network.
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Middleware Protocols
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Figure 4-3. An adapted reference model
for networked communication.
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Types of Communication
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Figure 4-4. Viewing middleware as an intermediate (distributed)
service in application-level communication.
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Remote Procedure Call (RPC)

A RPC allows a program to transparently call procedures
located on another machine. No message passing is visible to
the programmer.

A A widely used technique that underlies many distributed
systems.
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Conventional Procedure Call
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Figure 4-5. (a) Parameter passing in a local procedure call: the
stack before the call to read. (b) The stack while the called
procedure Is active.
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Parameter Passing in Procedure Calls

A Call-by-value: The variable is copied to the stack. The original
value is left unchanged

A Call-by-reference: The address of the variable is copied to the
stack so the called procedure modifies the same copy as the
procedure calling

A Call-by-copy/restore: The variable is copied to the stack by the
caller and then copied back after the call, overwriting the
call erds original value
How is call-by-copy/restore different from call-by-reference?
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Client and Server Stubs
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Figure 4-6. Principle of RPC between a client and server program.
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Remote Procedure Calls (1)

A remote procedure call occurs in the following
steps:
1.The client procedure calls the client stub in the normal way.

2.The client stub builds a message and calls the local operating
system.

3The clientodos OS sends the me:s
4.The remote OS gives the message to the server stub.

5.The server stub unpacks the parameters and calls the server.

Continued ¢é
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Remote Procedure Calls (2)

A remote procedure call occurs in the following
steps (continued):

6.The server does the work and returns the result to the stub.
7. The server stub packs it in a message and calls its local OS.
8The serveros OS sends the me
9The cli entodos OS gives the me

10.The stub unpacks the result and returns to the client.
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Parameter Passing

Passing parameters to RPCs can be tricky since it requires
packing parameters into a message (parameter marshaling) to
be interpreted correctly on another system. For example:

A Machines may use different character codes. EBCDIC versus ASCII
versus Unicode

A Different representation of integers and floating-point numbers
A Different byte addressing: little-endian versus big-endian format

A How to pass reference parameters (like pointers) since an address will be
meaningless on another system? Can we use call-by-copy-restore?

A How to pack types that take less space than a word? For example: a
short or a character.

A How to pack an array?
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Passing Value Parameters (1)
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4-7. The steps involved in a doing a
remote computation through RPC.
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Passing Value Parameters (2)
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Figure 4-8. (a) The original message on the Pentium.
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Passing Value Parameters (3)
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Figure 4-8. (a) The original message on the Pentium.
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Passing Value Parameters (4)

Figure 4-8. (c) The message after being inverted. The little
numbers in boxes indicate the address of each byte.
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Parameter Specification
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Figure 4-9. (a) A procedure. (b) The corresponding message.
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Asynchronous RPC (1)

A Asynchronous RPC: A client immediately continues once the
server accepts the RPC request. The server excutes the RPC
request after the acknowledgement

A Deferred asynchronous RPC: The client calls the server with a
RPC request and the server immmediately acknowledges it.
Later the server does a callback to the client with the result.
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Asynchronous RPC (2)
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Figure 4-10. (a) The interaction between client and
server in a traditional RPC.
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Asynchronous RPC (3)
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Figure 4-10. (b) The interaction using asynchronous RPC.
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Asynchronous RPC (4)
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Figure 4-11. A client and server interacting through
two asynchronous RPCs.
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RPC Implementations

A Distributed Computing Environment / Remote
Procedure Calls (DCE/RPC) was commissioned by the
Open Software Foundation, an industry consortium
now renamed as the Open Group. The DCE/RPC
speci fications were adopted
distributed computing, DCOM.

A Open Network Computing Remote Procedure Call
(ONC RPC) is a widely deployed remote procedure
call system. ONC was originally developed by Sun
Microsystems as part of their Network File System
project, and is sometimes referred to as Sun ONC or
Sun RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007~ Radintive All rights reserved.-Q3-2392275



Writing a Client
and a Server (1)

Figure 4-12. The steps in writing a client and
a server in DCE RPC.
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