DISTRIBUTED SYSTEMS

Principles and Paradigms
Second Edition
ANDREW S. TANENBAUM
MAARTEN VAN STEEN

Chapter 4
Communication

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Layered Protocols (1)

T T

Application Sttty > T
_ | Presentation protocol I
Presentation | = D i) > | 2
Session F S—— Session protocol | > 5
l [
Transport protocol
Transport I R it ROTRIOCO!) > | 4
—_____Network protocol________,
Network | < » I 3
________ Data link protocol _______,
Data link l “ > 2
S Physical protocol _______, >
Physical 1
Network

Figure 4-1. Layers, interfaces, and protocols
In the OSI model.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Layered Protocols (2)

— Data link layer header
— Network layer header

— Transport layer header
— Session layer header

Presentation layer header
|/ ’— Application layer header

layer trailer
e [T

—sy

Bits that actually appear on the network

Figure 4-2. A typical message as it appears on the network.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Middleware Protocols

Application | e e e e L » | 6
Middleware protocol

Middleware [s S > 5
I Transport protocol |

Transport R s > 4
l Network protocol]

Network I I > I 3

________ Data link protocol _______,

Data link < > 2
l Physical protocol I

Physical I > 1

Network

Figure 4-3. An adapted reference model
for networked communication.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Types of Communication

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client / |/
Request \ /

Transmission
interrupt

Storage
facility

Server Time —>

Figure 4-4. Viewing middleware as an intermediate (distributed)
service in application-level communication.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Remote Procedure Call (RPC)

= RPC allows a program to transparently call procedures
located on another machine. No message passing is visible to

the programmer.

= A widely used technique that underlies many distributed
systems.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Conventional Procedure Call

Stack pointer

Main program's Main program's
local variables local variables

nbytes

buf

fd

return address
read's local
variables

(@) (b)

Figure 4-5. (a) Parameter passing in a local procedure call: the
stack before the call to read. (b) The stack while the called
procedure Is active.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Parameter Passing in Procedure Calls

= Call-by-value: The variable is copied to the stack. The original
value is left unchanged

= Call-by-reference: The address of the variable is copied to the
stack so the called procedure modifies the same copy as the
procedure calling

= Call-by-copy/restore: The variable is copied to the stack by the
caller and then copied back after the call, overwriting the
caller’s original value
How is call-by-copy/restore different from call-by-reference?

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Client and Server Stubs

Wait for result

Client e——-eeeeeeee-g
/ N
Call remote Return
procedure from call
Request Reply

Call local procedure Time ——>»
and return results

Figure 4-6. Principle of RPC between a client and server program.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Remote Procedure Calls (1)

A remote procedure call occurs in the following
steps:
1.The client procedure calls the client stub in the normal way.

2.The client stub builds a message and calls the local operating
system.

3.The client's OS sends the message to the remote OS.
4.The remote OS gives the message to the server stub.

5.The server stub unpacks the parameters and calls the server.

Continued ...

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Remote Procedure Calls (2)

A remote procedure call occurs in the following
steps (continued):

6.The server does the work and returns the result to the stub.
7. The server stub packs it in a message and calls its local OS.
8.The server's OS sends the message to the client’s OS.
9.The client’s OS gives the message to the client stub.

10.The stub unpacks the result and returns to the client.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Parameter Passing

Passing parameters to RPCs can be tricky since it requires
packing parameters into a message (parameter marshaling) to
be interpreted correctly on another system. For example:

= Machines may use different character codes. EBCDIC versus ASCII
versus Unicode

= Different representation of integers and floating-point numbers
= Different byte addressing: little-endian versus big-endian format

= How to pass reference parameters (like pointers) since an address will be
meaningless on another system? Can we use call-by-copy-restore?

= How to pack types that take less space than a word? For example: a
short or a character.

= How to pack an array?

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Passing Value Parameters (1)

Client machine

Server machine

Client process Server process
1. Client call to :
procedure Implementation 6. Stub makes
of add local call to "add"
eI Server stub T e
—Lk=addid) | Gigntstub \\ [k=add()) |
A 0 s AT 0
proc: "add proc: "add Stub K
int: ~ val(i) 2 Stub builds int: val(i) 5. Stub unpacks
int:__val(j) message int__val(j) dheths
A
proc: "add" 4. Server OS
Client OS int__val() Server OS hands message
_ int:__val(j)) to server stub
3. Message is sent
across the network
Figure 4-7. The steps involved in a doing a

remote computation through RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Passing Value Parameters (2)

3] (2] (1] 10

- p—— p——— ——

Figure 4-8. (a) The original message on the Pentium.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Passing Value Parameters (3)

1 O
e
|_.L
1 QO
T

N
AN
1 O
-
1~
Vil

(b)

Figure 4-8. (a) The original message on the Pentium.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Passing Value Parameters (4)

0! |1 | 3
ol ol ol s
4! |5 k2
_“L “—L “_I _“J

Figure 4-8. (c) The message after being inverted. The little
numbers in boxes indicate the address of each byte.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Parameter Specification

_ foobar's local
and Stub Generation variables X
y
5
vd[0]
foobar(char x; float y; int z[5]) =
{ Z[1;
! /3
2[4

(b)
Figure 4-9. (a) A procedure. (b) The corresponding message.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Asynchronous RPC (1)

= Asynchronous RPC: A client immediately continues once the

server accepts the RPC request. The server excutes the RPC
request after the acknowledgement

= Deferred asynchronous RPC: The client calls the server with a
RPC request and the server immmediately acknowledges it.
Later the server does a callback to the client with the result.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Asynchronous RPC (2)

Client Wait for result

/

Call remote
procedure

N

Return
from call

Request

Server Call local procedure 1'me —»
and return results

(@)

Figure 4-10. (a) The interaction between client and
server in a traditional RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Asynchronous RPC (3)

Client Wait for acceptance

/ \
Call remote Return
procedure from call
Request Accept request
Server Call local procedure Time —»

(b)

Figure 4-10. (b) The interaction using asynchronous RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Asynchronous RPC (4)

Wait for Interrupt client
acceptance
Client ol \
/ N
Call remote]f%eturn | o
rocedur rom ca eturn
Scteads results Acknowledge
Accept
Request request
SEIVElr “-serssmacem——n it
Call local procedure \ Time —»
Call client with
one-way RPC

Figure 4-11. A client and server interacting through
two asynchronous RPCs.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

RPC Implementations

* Distributed Computing Environment / Remote
Procedure Calls (DCE/RPC) was commissioned by the
Open Software Foundation, an industry consortium
now renamed as the Open Group. The DCE/RPC
specifications were adopted in Microsoft’'s base for
distributed computing, DCOM.

= Open Network Computing Remote Procedure Call
(ONC RPC) is a widely deployed remote procedure
call system. ONC was originally developed by Sun
Microsystems as part of their Network File System
project, and is sometimes referred to as Sun ONC or
Sun RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Writing a Client

and a Server (1) sooni

Client code Client stub Header Server stub Server code
#mclude #include
C compiler compiler C compiler | C compiler
h 4 \ 4 \ 4
Client Cllent stub Server stub Server
object file object file object file object file
Lirmer Runtime F%un’bA Lir:(er
library library
A 4 \ 4
Client Server
binary binary

Figure 4-12. The steps in writing a client and
a server in DCE RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Writing a Client and a Server (2)

Three files output by the IDL compiller:

= A header file (e.g., interface.h, in C terms)
= The client stub
= The server stub

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Binding a Client to a Server (1)

= Registration of a server makes it possible for a
client to locate the server and bind to it

= Server location Is done In two steps:
1. Locate the server's machine

2. Locate the server on that machine

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Binding a Client to a Server (2)

Directory machine

Directory
server
‘ . .
3. Look up server 1Y @ter service
Client machine / Server machine
- 5. Do RPC Server | 1- Register end point
Client >

.

4. Ask for end point ™ DCE @\

gdaemon ™. End point

table

Figure 4-13. Client-to-server binding in DCE.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

RPC style Iimplementations

Java RMI (Remote Method Invocation)

XML-RPC and its successor SOAP: An RPC protocol
that uses XML to encode its calls and HTTP as a
transport mechanism

Microsoft .NET Remoting: offers RPC/RMI facilities for
distributed systems implemented on the Windows
platform

CORBA provides remote procedure invocation through
an intermediate layer called the object request broker.

Facebook's Thrift protocol and framework

Google Protocol Buffers

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Berkeley Sockets

Primitive Meaning

Socket Create a new communication end point

Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

Figure 4-14. The socket primitives for TCP/IP.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

The Message-Passing Interface (1)

Server
socket bind listen accept read write close
A 4 :
| !
. . . | / \
4 \ |
socket prconnect» write ——» read close

Client &

Figure 4-15. Connection-oriented communication
pattern using sockets.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

The Message-Passing Interface (2)

Primitive Meaning
MPI_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts
MPI_sendrecv | Send a message and wait for reply
MPI_isend Pass reference to outgoing message, and continue
MPI _issend Pass reference to outgoing message, and wait until receipt starts
MPI _recv Receive a message; block if there is none
MPI _irecv Check if there is an incoming message, but do not block

Figure 4-16. Some of the most intuitive
message-passing primitives of MPI.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message-Oriented Persistent Communication

Message-Oriented Middleware (MOM) or message-queuing
systems support persistent asynchronous communication.
These systems provide intermediate-term storage capacity for
messages without requiring either the sender or receiver to be
active during the message transmission.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message-Queuing Model (1)

Sender Sender Sender Sender
running running passive passive

<[l <
T <«

<[
I

Receiver Receiver Receiver Receiver
running passive running passive
(@) (b) () (d)

Figure 4-17. Four combinations for loosely-coupled
communications using gueues.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message-Queuing Model (2)

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block
Notify Install a handler to be called when a message is put into the specified queue

Figure 4-18. Basic interface to a queue in a
message-queuing system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

General Architecture of a Message-

Queuing System (1)

Sender
Queuing J,Ei
layer Y

Local OS

Look-up

| transport-level

address of queue

Queue-level _
address

Receiver

A

L—

/’JE;’ Queuing
i

layer

Address look-up
database

Local OS \

Network

e
Transport-level

address

Figure 4-19. The relationship between gueue-level addressing
and network-level addressing.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

General Architecture of a Message-

Queuing System (2)

Sender A

Application

Receive
queue
| | | <€—

[T}

Send queue

Application

Message

/

Figure 4-20. The
general organization of
a message-gueuing
system with routers.

Application

Application
| |1
ﬂ; | |1 J
° Receiver B
|| |
Router

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message Brokers

Repository with
conversion rules
Source client Message broker and programs Destination client

\ \ [/
\ \ / /

Broker

program

=

T

H E 7 = _ Queuing -

= s
- ; oL

—)—— e - oTTTEEEEEEEmT meork

Figure 4-21. The general organization of a message broker
IN a message-queuing system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message-queuing versus Email

= Emall systems are aimed at primarily supporting end
users while message-queuing systems are usually not.

= Emall systems need not provide guaranteed message
delivery, message priorities, logging facilities, efficient
multicasting, load balancing, fault tolerance and so on
for general usage.

= Message queuing systems can be used to implement
email, workflow, groupware and batch processing. But
the most important usage is the integration of a
collection of databases and applications into a
federated system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

IBM's WebSphere Message-Queuing
System

Client's receive

Sending client Routing table Send queue queue \ Recei/ving client
\ N
Queue) Queue
Program manager manager Program
MQ Interface /\é G L m‘/
——
Server Server
Stub stup | [MCA/MCA stub

/ I N/ '\A
B

N _ D

A\ \
Enterprise network
To other remote

RPC Local network

(synchronous)
Message passing queue managers
(asynchronous)

Figure 4-22. General organization of IBM's message-queuing
system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Channels

Attribute Description
Transport type Determines the transport protocol to be used
FIFO delivery Indicates that messages are to be delivered in the order they are sent

Message length

Maximum length of a single message

Setup retry count

Specifies maximum number of retries to start up the remote MCA

Delivery retries

Maximum times MCA will try to put received message into queue

Figure 4-23. Some attributes associated with

message channel agents.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message Transfer (1)

Alias table Routing table
LA1 |QMC ave [sa1 Alias table Routing table
LA2 [QMD QMC | SQ1 LA1 [QMA| [QMA | SQ1
QMD | SQ2 LA2 | QMD QMC | SQ1
QMD | SQ1
SQZEJ _EJ sQf
QMA H 5@
= QMB
Routing table g1 |11 QMC Routing table
QMA | SQ1
- QMA | SQf1
AR sqz_ L= QvB | saf
i | 261 ’ QMD | SQf
Alias table
LA1 [QMA — ||| SQf
LA2 | QMC -
QMD

Figure 4-24. The general organization of an MQ gqueuing network
using routing tables and aliases.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Message Transfer (2)

Primitive Description

MQopen Open a (possibly remote) queue

MQclose | Close a queue

MQput Put a message into an opened queue

MQget Get a message from a (local) queue

Figure 4-25. Primitives available in the
message-queuing interface.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Data Stream

, , _ Stream synchronization
Multimedia server Client /

Stream / | Stream
@ ¢ de$oder decoder
QoS QoS T

Compressed control control
multimedia data T
1 .
Network

Figure 4-26. A general architecture for streaming stored
multimedia data over a network.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Streams and Quality of Service

Properties for Quality of Service:

= The required bit rate at which data should be
transported.

= The maximum delay until a session has been
set up

= The maximum end-to-end delay .

* The maximum delay variance, or jitter.

= The maximum round-trip delay.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Enforcing QoS (1)

41

Packet departs source 2 6([7(|8

Packet arrives at buffer 1 31415 IE| 7 8

Packet removed from buffer < Time In buffer > 4 @8
I N AN NN NN MO M N B
15

N

Eap 1n playback
| | |

20

0 5 10
Time (sec)

Figure 4-27. Using a buffer to reduce |jitter.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Enforcing QoS (2)

Lost packet
Sent 1(12(|3]|4 5(/6(|7||8 9| |10[{11((12]]|[13||14|[15||16

Delivered 1112 (3]||4(|5]|]|6]||7](8]||9]| 0] |11 |12] [13| |14| [15] |16

< >
Gap of lost frames

(@)

Lost packet

Sent 1115][9](13 2|16((10(14 S [T 15 4118([12]|16

Delivered 1112(3][4]||5][6]||7||8]|]9]|10] [11] |12(|13| [14| |15] (16

X L—

Lost frames

(b)

Figure 4-28. The effect of packet loss in (a) non interleaved
transmission and (b) interleaved transmission.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Synchronization Mechanisms (1)

Receiver's machine

Application
Procedure that reads
two audio data units for
each video data unit \ > |
N\
P
Incoming stream A A >|:i]
\ 0S
________ A ‘

Network

Figure 4-29. The principle of explicit synchronization
on the level data units.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Synchronization Mechanisms (2)

Application tells
Receiver's machine middleware what
Multimedia control

/to do with incoming
icati streams
is part of middleware Application
Middleware layer —{ |—:[q
A
OS

Incoming stream

Network ~—~——"""7-

Figure 4-30. The principle of synchronization as
supported by high-level interfaces.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

