
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DISTRIBUTED SYSTEMS

Principles and Paradigms
Second Edition

ANDREW S. TANENBAUM

MAARTEN VAN STEEN

Chapter 3

Processes

Overview

 Multithreading (for higher performance)

 Virtualization (for portability and failure isolation)

 Clients

 Servers

 Code Migration

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Advantages of Threads

 Improves application responsiveness by allowing them to not

block

 Allows for parallel computation resulting in higher speed on

many-core systems

 Easier to structure many applications as a collection of

cooperating threads

 Higher performance compared to multiple processes since

switching between threads takes less time

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Thread Usage in Nondistributed Systems

Figure 3-1. Context switching in processes as the result of
IPC.

Thread Implementation

 User-space threads:
 Creating/destroying threads is inexpensive

 Switching context is very fast

 But invocation of a blocking system call blocks all threads…

 Cannot make use of multiple cores

 Kernel-space threads:
 Overcomes the last two issues with user-space threads but loses performance

 Hybrid model: Light-Weight Processes (LWP). Multiple

LWP/threads run inside a single (heavy-weight) process. In

addition, the system offers a user-level threads package.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Thread Implementation

Figure 3-2. Combining kernel-level lightweight

processes and user-level threads.

Multithreaded Clients

Multiple threads can be used to hide delays in network

communications.

For example, a web browser can start up several threads, one

for downloading the HTML source of the page, one each for

images on the page, one each for animations/applets etc

Replicated web servers along with multi-threaded clients can

result in shorter download times.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Multithreaded Servers (1)

Figure 3-3. A multithreaded server organized in a

dispatcher/worker model.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Multithreaded Servers (2)

Figure 3-4. Three ways to construct a server.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Virtualization

Virtualization is the creation of a virtual (rather than

actual) version of something, such as a hardware

platform, operating system, a storage device or

network resources.

 Eases administration of large number of servers (or

resources)

 Helps with scalability and better utilization of hardware

resources

 The driver behind cloud computing and utility computing

 Has been around for decades. IBM mainframes have used

this technique very successfully for a long time

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

The Role of Virtualization in

Distributed Systems

Figure 3-5. (a) General organization between a program,

interface, and system. (b) General organization of virtualizing

system A on top of system B.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectures of Virtual Machines (1)

Interfaces at different levels

 An interface between the hardware and software

consisting of machine instructions

 that can be invoked by any program.

 An interface between the hardware and software,

consisting of machine instructions

 that can be invoked only by privileged programs,

such as an operating system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectures of Virtual Machines (2)

Interfaces at different levels

 An interface consisting of system calls as

offered by an operating system.

 An interface consisting of library calls

– generally forming what is known as an application

programming interface (API).

– In many cases, the aforementioned system calls

are hidden by an API.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectures of Virtual Machines (3)

Figure 3-6. Various interfaces offered by computer systems.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectures of Virtual Machines (4)

Virtualization can be implemented at two levels.

 Process Virtual Machine: An abstract instruction set that

is to be used for executing applications. For example:

Java runtime, Windows emulation (Wine) on

Unix/Linux/MacOS.

 Virtual Machine Monitor: A layer completely shielding the

original hardware but offering the complete instruction

set of that same (or other hardware) as an interface.

Makes it possible to have multiple instances of different

operating systems run simultabeously on the same

platform. Examples: Vmware, VirtualBox, Xen,

VirtualPC, Parallels etc

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectures of Virtual Machines (5)

Figure 3-7. (a) A process virtual machine, with multiple

instances of (application, runtime) combinations.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectures of Virtual Machines (6)

Figure 3-7. (b) A virtual machine monitor, with multiple instances

of (applications, operating system) combinations.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Design Issues for Clients

 For each remote service the client machine can have a

separate counterpart that can contact the service over

the network

 Provide direct access to remote services by only offering

a convenient user interface. The client machine is used

only as a terminal with no need for local storage, leading

to an application neutral solution. (Thin-client approach)

 Transparency for clients: Access (via stubs/interfaces),

location, migration, relocation, replication, failure, concurrency

(intermediate layer like a transaction monitor), persistence (server-

side)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Networked User Interfaces (1)

Figure 3-8. (a) A networked application with its own protocol.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Networked User Interfaces (2)

Figure 3-8. (b) A general solution to allow access

to remote applications.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Example: The XWindow System

Figure 3-9. The basic organization of the XWindow System.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Client-Side Software for Distribution

Transparency

Figure 3-10. Transparent replication of a server

using a client-side solution.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Design Issues for Servers

 A server is a process implementing a specific service on

behalf of a collection of clients

 A server can be iterative or concurrent. Concurrent

servers can be multi-threaded or multi-process

 How does a client find a server? Need to know the end-

point or port and the host address

 Statically assigned like well known servers like HTTP on port 80

 Look-up service provided by a special directory server

 Using a superserver that selects on multiple ports and forks off the

appropriate server when a request comes in

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

General Design Issues (1)

Figure 3-11. (a) Client-to-server binding using a daemon.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

General Design Issues (2)

Figure 3-11. (b) Client-to-server binding using a superserver.

Servers: Further Design Issues
 How to handle communication interrupts? Use out-of-band data. Example: to

cancel the upload of a huge file

 Server listens to separate endpoint, which has higher priority, while also listening

to the normal endpoint (with lower priority)

 Send urgent data on the same connection. Can be done with TCP, where the

server gets a signal (SIGURG) on receiving urgent data

 Stateless servers. A stateless server does not remember anything from one

request to another. For example, a HTTP server is stateless. Cookies can be

used to transmit information specific to a client with a stateless server. Easy to

recover from a crash.

 Stateful servers. Maintains information about its clients. Performance

improvement over stateless servers is often the reason for stateful servers.

Needs to recover its entire state as it was just before crash. Can be quite

complex for distributed servers.

 Soft state: The server promises to maintain state on behalf of the client, but

only for a limited time.
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Server Clusters (1)

Figure 3-12. The general organization of a

three-tiered server cluster.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Server Clusters (2)

Figure 3-13. The principle of TCP handoff (requires IP forwarding

and IP spoofing).

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Server Clusters (3)

 Switch can hand off connections in round-robin and thus be

oblivious of the service being provided

 Switch can handoff request based on type of service requested

to the appropriate server

 Switch can handoff request based on server loads

 Switch can handoff request by being aware of the content

 Single point of access can be made better using DNS to map

one hostname to several servers. But the client still has to try

multiple servers in case some are down.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Distributed Servers

 A distributed server is a possibly dynamically changing set of

machines, with also possibly varying access points, but which

nevertheless appears to the outside world as a single, powerful

machine

 A stable access point across a distributed server can be

implemented using mobility support for IPv6 (MIPv6)

 home network: where a mobile node normally resides

 home address (HoA): stable address for a node in its home network

 care of address (CoA): when a mobile node attaches to a foreign network, its

sets up a forwarding from its HoA to the CoA

 route optimization from MPIv6 is used to make different clients believe they are

communicating with a single server where, in fact, each is communicating with

a different member node of the distributed server

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Distributed Servers

Figure 3-14. Route optimization in a distributed server.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Managing Server Clusters

 An administrator manually logs in to each server to manage

them. Or they use shell scripts or simple tools to manage a

collection of servers

 An management interface is provided at one system to

collectively manage the cluster of servers

 However to go to the level of thousands or more of servers,

most administration approaches are ad hoc and still an active

area of research

 Large server cluster farms are increasing rapidly! Google is

said to operate over a million servers in 12 farms

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Managing Server Clusters

Figure 3-15. The basic organization of a PlanetLab node.

Example: PlanetLab

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

PlanetLab (1)

PlanetLab management issues:

 Nodes belong to different organizations.

– Each organization should be allowed to specify who

is allowed to run applications on their nodes,

– And restrict resource usage appropriately.

 Monitoring tools available assume a very specific

combination of hardware and software.

– All tailored to be used within a single organization.

 Programs from different slices but running on the

same node should not interfere with each other.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

PlanetLab (2)

Figure 3-16. The management relationships

between various PlanetLab entities.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

PlanetLab (3)

Relationships between PlanetLab entities:

 A node owner puts its node under the regime of a

management authority, possibly restricting usage

where appropriate.

 A management authority provides the necessary

software to add a node to PlanetLab.

 A service provider registers itself with a

management authority, trusting it to provide well-

behaving nodes.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

PlanetLab (4)

Relationships between PlanetLab entities:

 A service provider contacts a slice authority to
create a slice on a collection of nodes

 The slice authority needs to authenticate the
service provider

 A node owner provides a slice creation service for a
slice authority to create slices. It essentially
delegates resource management to the slice
authority

 A management authority delegates the creation of
slices to a slice authority

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Reasons for Migrating Code

 Improve computing performance by moving processes from
heavily-loaded machines to lightly loaded machines.

 Improve communication times by shipping code to systems

where large data sets reside. E.g. a client ships code to a
database server or vice versa.

Mobile Agents: small piece of code that moves from site to site

for a web search. Several copies can be made to improve
performance.

Flexibility to dynamically configure distributed systems. E.g. a

server can provide interface code to a client dynamically. This
does the require that the protocol for downloading and initializing
the code is standardized. Allows the interface to be changed as
often as desired without having to rebuild applications or servers.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Reasons for Migrating Code

Figure 3-17. The principle of dynamically configuring a client to
communicate to a server. The client first fetches the

necessary software, and then invokes the server.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Code Migration Models

A process consists of three segments: code segment, resource
segment, execution segment.

Weak mobility: Only the code segment (and some initialization

data) can be transferred. Transferred program always starts at
one of the predefined starting positions. E.g. java applets.

Strong mobility: Code and execution segments can both be

transferred.

Sender-initiated versus receiver-initiated: Uploading code to a

server versus downloading code from a server by a client.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Models for Code Migration

Figure 3-18. Alternatives for code migration.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Migration and Local Resources

Figure 3-19. Actions to be taken with respect to the references to

local resources when migrating code to another machine.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Migration in Heterogeneous Systems

Three ways to handle migration (which can be combined)

 Pushing memory pages to the new machine and

resending the ones that are later modified during the

migration process.

 Stopping the current virtual machine; migrate memory, and

start the new virtual machine.

 Letting the new virtual machine pull in new pages as

needed, that is, let processes start on the new virtual

machine immediately and copy memory pages on

demand.

