
1

Introduction
• Prolog is a logical programming language and

stands for PROgramming in LOGic
• invented in the early seventies at the University of

Marseille
• Preferred for AI programming and mainly used in

such areas as:
 Theorem proving, expert systems, NLP, …

• Differs from the most common programming
languages because it is declarativre language
(Traditional programming languages are said to be
procedural)

• Logical programming is the use of mathematical
logic for computer programming.

2

Introduction (Cont’d)

• For symbolic, non-numeric computation
• e.g. : parent (tom, bob).
• Parent is a relation between its parameters:

tom and bob
• The whole thing is called a clause
• Each clause declares one fact about a

relation

3

Prolog

• Prolog has an interactive interpreter
• After starting SWI-Prolog, the interpreter can

start reading your Prolog files and accept your
queries.

• To exit Prolog simply type the command ‘halt.’
(Notice the full-stop)

• Prolog program files usually have the extension
.pl or .pro

How to run Prolog
• Starting Prolog on Windows

 Start->Programs->SWI-Prolog->Prolog

• you should then see something like this on your screen after you
start SWI-Prolog:

Welcome to SWI-Prolog (Multi-threaded, Version 5.2.13)
Copyright (c) 1990-2003 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

• Once you have started Prolog you can send commands and queries
to the Prolog interpreter by typing them in after the ?-> prompt.

• listing
 makes Prolog show you the facts and rules that are currently loaded

1 ?- listing.
Yes

• The Yes indicates that the interpreter has succeeded with the
command. However, it has not listed anything. This tells us that the
knowledge base is empty, And it should be, since you have not
actually loaded anything, yet.

4

How to run Prolog
• assert

We can add a fact or rule to the knowledge base using
the assert command.

• Type, assert(likes(mary,john)). at the ?- prompt. This
adds the fact like(mary,john) to the knowledge base. We
are assert that there is a directed likes relationship
between the entity mary to the entity john, i.e. mary likes
john. Prolog reponds with Yes to indicate that the fact
was successfully asserted. You should get something
like:

 3 ?- assert(likes(mary,john)).
Yes
4 ?-

5

6

Statements

• There are three categories of statements
in Prolog:
 Facts: Those are true statements that form the

basis for the knowledge base.
 Rules: Similar to functions in procedural

programming (C++, Java…) and has the form of
if/then.

 Queries: Questions that are passed to the
interpreter to access the knowledge base and start
the program.

7

Facts

• A fact is a one-line statement that ends with
a full-stop.

 parent (john, bart).
 parent (barbara, bart).
 male (john).
 male (bart).
 female (barbara).

8

Rules

• A Rule consists of
 a condition part (right-hand side)  body of clause
 a conclusion part (left-hand side)  head of clause
 They are separated by ‘:-’ which means ‘if’

• offspring relation
 offspring (X, Y) : X is an offspring of Y
  X,Y (offspring (X, Y)  parent (Y, X))
 offspring (X, Y) :- parent (Y, X).

head body

9

Rules (Cont’d)

• Variables in head of rules are universally
quantified

• Variables appearing only in the body are
existentially quantified

• Rules vs. Facts
 A Fact is something unconditionally true
 Rules specify things that are true if some condition is

satisfied

10

Queries

• Queries are questions
• The engine tries to entail the query (goal)

using the Facts and Rules in KB
• There are two kinds of answer
 Yes/No: parent (tom, bob).
 Unified Answer/No: parent (X, bob).

• Other possible answer(s) can be
found using semicolon
(return for stopping)

• For example : parent (X, Y). 

X=pam
Y=bob;

X=tom
Y=bob;

X=tom
Y=liz;

no

11

Queries (Cont’d)

• Q: Who is a grandparent of Jim? (using
parent relationship)
 Who is a parent of Jim? Assuming “Y”
 Who is a parent of “Y”? Assuming “X”
 ?- parent (Y, jim) , parent (X, Y).
 If we change the order of them the logical meaning

remains the same
• Q: Who are Tom’s grandchildren?
• Q: Are Ann and Pat siblings?

12

Where the program is written?

• Facts and Rules are stored in one or more
files forming our Knowledge Base

• Files containing KB are loaded into the
interpreter

• After changing these files, the files should be
loaded again to be effective

• Queries are asked in the interactive mode in
front of the question prompt: ?-

13

Reading Files

• consult (filename).
 Reads and compiles a Prolog source file
 consult ('/home/user/prolog/sample.pl').

• reconsult (filename).
 Reconsult a changed source files.
 reconsult('/home/user/prolog/sample.pl').

• [‘filename’].
 ['/home/user/prolog/sample.pl'].

• make.
 Reconsult all changed source files.

14

Examples

• mother (X, Y) :- parent (X, Y) , female (X).
• sister (X, Y) :-

parent (Z, X) ,
parent (Z, Y) ,
female (X).

• What is wrong with this rule?
• Any female is her own sister
• Solution?

15

Comments

• Multi-line :
/* This is a comment

This is another comment */

• Short :
% This is also a comment

16

Prolog Syntax

• Terms in Prolog:
 Simple
 Constants:

 Atoms
 Numbers

 Integer
 Real

 Variables
 Complex Structures

17

Atoms

• They should consist of the following set of
characters:
 The upper-case letters
 The lower-case letters
 The digits
 The special characters: +, -, *, /, <, >, =, :, ., &, ~, _

• Atoms should not start with upper-case letters or
underscore and can be followed by any set of
characters.

• The scope of an atom is the whole program

18

Examples of Atoms

• anna, x30, x_, x___y, miss_Jones

• <---> , ==>, … , .:. , ::= (except reserved ones like :-)

• ‘Tom’ , ‘Sarah Jones’ (Useful for having an atom
starting with a capital letter)

19

Numbers

• Integer
 limited to an interval between some smallest and

some largest number permitted by a particular Prolog
implementation

 e.g. : 1, 1001 , 0 , -98

• Real
 Not frequently used

 e.g. : 3.14 , -0.0035 , 100.2

20

Variables

• Consists of letters, digits and ‘_’
• Starting with an upper-case or an ‘_’
• The variable ‘_’ (a single underscore character)

is a special one. It's called the anonymous
variable.

• The scope of a variable is its clause
 If the name X15 occurs in two clauses, it represents

two different variables.
 Each occurrence of X15 within the same clause

means the same variable

21

Structures

• Compound Objects
• Each constituent is a simple object or

structure.
• e.g. : date (1, jan, 2007)
• Components can be variables.
• Any day in Jan 2007  date (Day, jan, 2007)

22

Conjunction and Disjunction

• Conjunction  ,
• Disjunction  ;
 P :- Q ; R.
 P :- Q
 P :- R

• ‘,’ has more priority
 P :- Q , R ; S , T , U .
 P :- (Q , R) ; (S , T , U) .

23

Recursion

• Define ancestor relation based on parent
relation.

• ancestor (X, Z) :-
parent (X, Z).

• ancestor (X, Z) :-
parent (X,Y) , parent (Y, Z).

• ancestor (X, Z) :-
parent (X, I) , parent (I, Y) , parent (Y, Z).

• Solution is Recursion

24

Recursion

• Remember from functional programming
languages

void func (int a , int b)
{

//base case
if (condition)

return;
…
// recursion
func (x, y);
…

}

25

Recursion

• Rules in Prolog are like functions in procedural
programming languages

• For recursion we should define the ancestor
relation in terms of itself

• Base Case :
 ancestor(X, Z) :- parent (X, Z).

• Recursion Step :
 ancestor (X, Z) :- parent (X, Y) , ancestor (Y, Z).

26

How Prolog Answers Questions

• Instead of starting with simple facts given in the
program, prolog starts with the goals. In fact, Prolog
does goal driven search.

• Using rules, Prolog substitutes the current goals
(which matches a rule head) with new sub-goals (the
rule body), until the new sub-goals happen to be
simple facts.

• Prolog returns the first answer matching the query.
When prolog discovers that a branch fails or if you
type ‘;’ to get other answers, it backtracks to the
previous node and tries to apply an alternative rule
at that node.

27

Example
• Facts:
 parent (pam, bob). parent (tom, bob). parent (tom, liz).
 parent (bob, ann). parent (bob, pat). parent (pat, jim).

• Rules:
1. ancestor (X, Z) :- parent (X, Z).
2. ancestor (X, Z) :- parent (X, Y) , ancestor (Y, Z)

• ?- ancestor (tom, pat). (goal)
• The rule that appears first, is applied first
• Unifying: {tom/X} , {pat/Z}
 The goal is replaced by : parent (tom, pat). (sub-goal)

• Fails  backtracking

28

Example (Cont’d)

• Applying the next rule
2. ancestor (X, Z) :- parent (X, Y) , ancestor (Y, Z)

• Unifying: {tom/X} , {pat/Z}
 New Goal: parent (tom, Y) , ancestor (Y, pat)
 Prolog tries to satisfy them in order in which they are

written
 The first one matches one of the facts {bob/Y}
 Second sub-goal: ancestor (bob, pat)
 The same steps should be done for this sub-goal

29

Orders of Clauses and Goals

1. ancestor (X, Z) :- parent (X, Z).
ancestor (X, Z) :- parent (X, Y) , ancestor (Y, Z).

2. ancestor (X, Z) :- parent (X, Y) , ancestor (Y, Z).
ancestor (X, Z) :- parent (X, Z).

3. ancestor (X, Z) :- parent (X, Z).
ancestor (X, Z) :- ancestor (Y, Z) , parent (X, Y).

4. ancestor (X, Z) :- ancestor (Y, Z) , parent (X, Y).
ancestor (X, Z) :- parent (X, Z).

30

Orders of Clauses and Goals

• It turns out that :
 The first and second variations are able to reach and

answer for ancestor.
 The third sometimes can and sometimes can’t
 And the forth can never reach and answer (infinite

recursion)
• “Try simple things first”.

31

More about Prolog

• A collection of facts and rules is called a
knowledge base (KB).

• Prolog works based on “first-order predicate
logic”

• Matching corresponds to what is called
“Unification”.

• Prolog has no data types

