
ARTIFICIAL INTELLIGENCE
KNOWLEDGE REPRESENTATION



REPRESENTATION

 AI agents deal with knowledge (data)
 Facts (believe & observe knowledge)
 Procedures (how to knowledge)
 Meaning (relate & define knowledge)

 Right representation is crucial
 Early realisation in AI
 Wrong choice can lead to project failure
 Active research area



KNOWLEDGE REPRESENTATION FRAMEWORK

 Problem solving requires large amount of knowledge and some 
mechanism for manipulating that knowledge.

 The Knowledge and the Representation are distinct entities, play 
a central but distinguishable roles in intelligent system.
 − Knowledge is a description of the world; it determines a system's 

competence by what it knows.
 − Representation is the way knowledge is encoded; it defines the 

system's performance in doing something.
 In simple words, we :

 − need to know about things we want to represent , and
 − need some means by which things we can manipulate.

 Thus, knowledge representation can be considered at two levels :
 (a) knowledge level at which facts are described, and
 (b) symbol level at which the representations of the objects, defined in terms of symbols, can be manipulated 

in the programs.
 Note : A good representation enables fast and accurate access to knowledge and understanding of the 

content.



CHOOSING A REPRESENTATION

 For certain problem solving techniques
 ‘Best’ representation already known
 Often a requirement of the technique
 Or a requirement of the programming language (e.g. Prolog)

 Examples
 First order theorem proving… first order logic
 Inductive logic programming… logic programs
 Neural networks learning… neural networks

 Some general representation schemes
 Suitable for many different (and new) AI applications



SOME GENERAL REPRESENTATIONS

1. Logical Representations
2. Production Rules
3. Semantic Networks

• Conceptual graphs, frames
4. Description Logics



WHAT IS A LOGIC?

 A language with concrete rules
 No ambiguity in representation (may be other errors!)
 Allows unambiguous communication and processing
 Very unlike natural languages e.g. English

 Many ways to translate between languages
 A statement can be represented in different logics
 And perhaps differently in same logic

 Expressiveness of a logic
 How much can we say in this language?

 Not to be confused with logical reasoning
 Logics are languages, reasoning is a process (may use logic)



KNOWLEDGE REPRESENTATION SCHEMES
 There are four types of Knowledge representation - Relational, Inheritable, Inferential, and 

Declarative/Procedural.
 ◊ Relational Knowledge :
 − provides a framework to compare two objects based on equivalent attributes.
 − any instance in which two different objects are compared is a relational type of knowledge.
 ◊ Inheritable Knowledge
 − is obtained from associated objects.
 − it prescribes a structure in which new objects are created which may inherit all or a subset of 

attributes from existing objects.
 ◊ Inferential Knowledge
 − is inferred from objects through relations among objects.
 − e.g., a word alone is a simple syntax, but with the help of other words in phrase the reader 

may infer more from a word; this inference within linguistic is called semantics.
 ◊ Declarative Knowledge
 − a statement in which knowledge is specified, but the use to which that knowledge is to be put 

is not given.
 − e.g. laws, people's name; these are facts which can stand alone, not dependent on other 

knowledge;
 Procedural Knowledge
 − a representation in which the control information, to use the knowledge, is embedded in the 

knowledge itself.
 − e.g. computer programs, directions, and recipes; these indicate specific use or implementation;



RELATIONAL KNOWLEDGE
 Used to associate elements of one domain with the elements of another 

domain or set of design constrains.
 − Relational knowledge is made up of objects consisting of attributes and their 

corresponding associated values.
 − The results of this knowledge type is a mapping of elements among different 

domains.
 The table below shows a simple way to store facts.

 − The facts about a set of objects are put systematically in columns.
 − This representation provides little opportunity for inference.

 Given the facts it is not possible to answer simple question such as :
 " Who is the heaviest player ? ".
 But if a procedure for finding heaviest player is provided, then 

these facts will enable that procedure to compute an answer.



INHERITABLE KNOWLEDGE
 • Inheritable knowledge : elements inherit attributes from their 

parents.
 The knowledge is embodied in the design hierarchies found in the functional, 

physical and process domains. Within the hierarchy, elements inherit 
attributes from their parents, but in many cases, not all attributes of the 
parent elements be prescribed to the child elements.
 − The basic KR needs to be augmented with inference mechanism, and
 − Inheritance is a powerful form of inference, but not adequate.

 The KR in hierarchical structure, shown below, is called “semantic network” or 
a collection of “frames” or “slot-and-filler structure". It shows property 
inheritance and way for insertion of additional knowledge.

 − Property inheritance : Objects/elements of specific classes inherit attributes 
and values from more general classes.

 − Classes are organized in a generalized hierarchy.

The directed arrows represent 
attributes (isa, instance, and 
team) originating at the object 
being described and terminating 
at the object or its value.
The box nodes represents 
objects and values of the 
attributes



INFERENTIAL KNOWLEDGE
 Generates new information from the given information. This new information 

does not require further data gathering form source, but does require analysis 
of the given information to generate new knowledge.
 − Given a set of relations and values, one may infer other values or relations.
 − In addition to algebraic relations, a predicate logic (mathematical deduction)

 is used to infer from a set of attributes.
 − Inference through predicate logic uses a set of logical operations to relate individual 

data. The symbols used for the logic operations are :
 " → " (implication), " ¬ " (not), " V " (or), " Λ " (and),
 " ∀ " (for all), " ∃ " (there exists).
 Examples of predicate logic statements :
 1. Wonder is a name of a dog : dog (wonder)
 2. All dogs belong to the class of animals : ∀ x : dog (x) → animal(x)

3. All animals either live on land or in water : ∀ x : animal(x) → live (x, 
land) V live (x, water)

 We can infer from these three statements that :
 " Wonder lives either on land or on water."
 As more information is made available about these objects and their
 relations, more knowledge can be inferred.



SYNTAX AND SEMANTICS

 Syntax
 Rules for constructing legal sentences in the logic
 Which symbols we can use (English: letters, punctuation)
 How we are allowed to combine symbols

 Semantics
 How we interpret (read) sentences in the logic
 Assigns a meaning to each sentence

 Example: “All lecturers are seven foot tall”
 A valid sentence (syntax)
 And we can understand the meaning (semantics)
 This sentence happens to be false (there is a counterexample)



DECLARATIVE/PROCEDURAL KNOWLEDGE

 The difference between Declarative/Procedural knowledge is not very clear.
 Declarative knowledge :
 Here, the knowledge is based on declarative facts about axioms and domains.
 − axioms are assumed to be true unless a counter example is found to 

invalidate them.
 − domains represent the physical world and the perceived functionality.
 − axiom and domains thus simply exists and serve as declarative statements 

that can stand alone.
 Procedural knowledge:
 Here the knowledge is a mapping process between domains that specifies
 “what to do when” and the representation is of “how to make it” rather than
 “what it is”. The procedural knowledge :
 − may have inferential efficiency, but no inferential adequacy and acquisitional

efficiency.
 − are represented as small programs that know how to do specific things,
 how to proceed.
 Example : a parser in a natural language has the knowledge that a noun 

phrase may contain articles, adjectives and nouns. It thus accordingly call 
routines that know how to process articles, adjectives and nouns.



LOGIC

 Assumptions about KR
 − Intelligent Behavior can be achieved by 

manipulation of symbol structures.
 − KR languages are designed to facilitate operations 

over symbol structures, have precise syntax and 
semantics;
 Syntax tells which expression is legal ?, e.g., red1(car1), 

red1 car1, car1(red1), red1(car1 & car2) ?; and
 Semantic tells what an expression means ? e.g., property 

“dark red” applies to my car.
 − Make Inferences, draw new conclusions from existing facts.

 To satisfy these assumptions about KR, we need 
formal notation that allow automated inference 
and problem solving. One popular choice is 
use of logic.



LOGIC
 Logic is concerned with the truth of statements about the 

world.
 Generally each statement is either TRUE or FALSE.
 Logic includes : Syntax , Semantics and Inference Procedure.

 ◊ Syntax :
 Specifies the symbols in the language about how they can be combined to form 

sentences. The facts about the world are represented as sentences in logic.
 ◊ Semantic :

 Specifies how to assign a truth value to a sentence based on its meaning in 
the world. It Specifies what facts a sentence refers to. A fact is a claim about 
the world, and it may be TRUE or FALSE.

 ◊ Inference Procedure :
 Specifies methods for computing new sentences from an existing sentences.

 Note :
 Facts are claims about the world that are True or False.
 Representation is an expression (sentence), stands for the objects and 

relations.
 Sentences can be encoded in a computer program



LOGIC
 • Logic as a KR Language
 Logic is a language for reasoning, a collection of rules used while 

doing logical reasoning. Logic is studied as KR languages in artificial 
intelligence.

 ◊ Logic is a formal system in which the formulas or sentences 
have true or false values.

 ◊ The problem of designing a KR language is a tradeoff 
between that which is :

 (a) Expressive enough to represent important objects and relations in a 
problem domain.

 (b) Efficient enough in reasoning and answering questions about 
implicit information in a reasonable amount of time.

 ◊ Logics are of different types : Propositional logic, Predicate 
logic, Temporal logic, Modal logic, Description logic etc;

 They represent things and allow more or less efficient inference.
 ◊ Propositional logic and Predicate logic are fundamental to 

all logic.
 Propositional Logic is the study of statements and their connectivity.
 Predicate Logic is the study of individuals and their properties.



LOGIC REPRESENTATION
 The Facts are claims about the world that are True or False.
 Logic can be used to represent simple facts.
 To build a Logic-based representation :
 ◊ User defines a set of primitive symbols and the 

associated semantics.
 ◊ Logic defines ways of putting symbols together so 

that user can define legal sentences in the language that 
represent TRUE facts.

 ◊ Logic defines ways of inferring new sentences from 
existing ones.

 ◊ Sentences - either TRUE or false but not both are 
called propositions.

 ◊ A declarative sentence expresses a statement with a 
proposition as

 content; example:
 the declarative "snow is white" expresses that snow is white; 

further, "snow is white" expresses that snow is white is TRUE.



PROPOSITIONAL LOGIC (PL)
 A proposition is a statement, which in English would be a declarative 

sentence. Every proposition is either TRUE or FALSE.
 Examples: (a) The sky is blue., (b) Snow is cold. , (c) 12 * 12=144
 propositions are “sentences” , either true or false but not both.
 a sentence is smallest unit in propositional logic.
 if proposition is true, then truth value is "true" .
 if proposition is false, then truth value is "false" .

− Propositional logic is fundamental to all logic.
− Propositional logic is also called Propositional calculus, Sentential
calculus, or Boolean algebra.
− Propositional logic tells the ways of joining and/or modifying entire 
propositions, statements or sentences to form more complicated 
propositions, statements or sentences, as well as the logical 
relationships and properties that are derived from the methods of
combining or altering statements



PROPOSITIONAL LOGIC

 Syntax
 Propositions, e.g. “it is wet”
 Connectives: and, or, not, implies, iff (equivalent)

 Brackets, T (true) and F (false)
 Semantics (Classical AKA Boolean)

 Define how connectives affect truth
 “P and Q” is true if and only if P is true and Q is true

 Use truth tables to work out the truth of statements



PROPOSITIONAL LOGIC
 ■ Statement, variables and symbols
 These and few more related terms, such as, connective, truth value, contingencies, tautologies, 

contradictions, antecedent, consequent and argument are explained below.
 ◊ Statement

 Simple statements (sentences), TRUE or FALSE, that does not contain any other statement as a part, 
are basic propositions;

 lower-case letters, p, q, r, are symbols for simple statements.
 Large, compound or complex statement are constructed from basic propositions by combining them 

with connectives.

 ◊ Connective or Operator
 The connectives join simple statements into compounds, and joins compounds into larger 

compounds.
 Table below indicates, five basic connectives and their symbols :

 − listed in decreasing order of operation priority;
 − operations with higher priority is solved first.

 Example of a formula : ((((a Λ ¬b) V c → d) ↔ ¬ (a V c ))



PROPOSITIONAL LOGIC

 ◊ Tautologies
 A proposition that is always true is called a tautology. e.g., (P v ¬P) 

is always true regardless of the truth value of the proposition P.
 ◊ Contradictions
 A proposition that is always false is called a contradiction. e.g., (P ∧

¬P) is always false regardless of the truth value of the 
proposition P.

 ◊ Contingencies
 A proposition is called a contingency, if that proposition is neither a 

tautology nor a contradiction e.g., (P v Q) is a contingency.
 ◊ Antecedent, Consequent
 In the conditional statements, p → q , the 1st statement or "if -

clause" (here p) is called antecedent , 2nd statement or "then - clause" 
(here q) is called consequent.



PROPOSITIONAL LOGIC
 ◊ Argument
 Any argument can be expressed as a compound statement. Take all 

the premises, conjoin them, and make that conjunction the 
antecedent of a conditional and make the conclusion the consequent. 
This implication statement is called the corresponding conditional of 
the argument.

 Note :
 − Every argument has a corresponding conditional, and every 

implication statement has a corresponding argument.
 − Because the corresponding conditional of an argument is a 

statement, it is therefore either a tautology, or a contradiction, or a 
contingency.

 ‡ An argument is valid "if and only if" its corresponding 
conditional is a tautology.

 ‡ Two statements are consistent "if and only if" their  
conjunction is not a contradiction.

 ‡ Two statements are logically equivalent "if and only if" their 
truth table columns are identical; "if and only if" the statement of 
their equivalence using " ≡ " is a tautology.

 Note : The truth tables are adequate to test validity, tautology, 
contradiction, contingency, consistency, and equivalence.



PREDICATE LOGIC

 Propositional logic combines atoms
 An atom contains no propositional connectives
 Have no structure (today_is_wet, john_likes_apples)

 Predicates allow us to talk about objects
 Properties:   is_wet(today)
 Relations:    likes(john, apples)
 True or false

 In predicate logic each atom is a predicate
 e.g. first order logic, higher-order logic



PREDICATE LOGIC
 The propositional logic, is not powerful enough for all types of 

assertions;
 Example : The assertion "x > 1", where x is a variable, is not a proposition
 because it is neither true nor false unless value of x is defined.
 For x > 1 to be a proposition ,
 − either we substitute a specific number for x ;
 − or change it to something like "There is a number x for which x > 1 holds";
 − or "For every number x, x > 1 holds".
 Consider example :
 “All men are mortal.
 Socrates is a man.
 Then Socrates is mortal” ,
 These cannot be expressed in propositional logic as a finite and logically valid 

argument (formula).
 We need languages : that allow us to describe properties (predicates) 

of objects, or a relationship among objects represented by the variables .
 Predicate logic satisfies the requirements of a language.
 − Predicate logic is powerful enough for expression and reasoning.
 − Predicate logic is built upon the ideas of propositional logic



PREDICATE LOGIC
 ■ Predicate :
 Every complete sentence contains two parts: a subject and a predicate.
 The subject is what (or whom) the sentence is about.
 The predicate tells something about the subject;
 Example :
 A sentence "Judy {runs}".
 The subject is Judy and the predicate is runs .
 Predicate, always includes verb, tells something about the subject.
 Predicate is a verb phrase template that describes a property of objects, or a 

relation among objects represented by the variables.
 Example:
 “The car Tom is driving is blue" ;
 "The sky is blue" ;
 "The cover of this book is blue"
 Predicate is “is blue" , describes property.
 Predicates are given names; Let ‘B’ is name for predicate "is_blue".
 Sentence is represented as "B(x)" , read as "x is blue";
 “x” represents an arbitrary Object .



PREDICATE LOGIC

 ■ Predicate logic expressions :
 The propositional operators combine predicates, like
 If ( p(....) && ( !q(....) || r (....) ) )
 Examples of logic operators : disjunction (OR) and 

conjunction (AND).
 Consider the expression with the respective logic 

symbols || and &&
 x < y || ( y < z && z < x)
 Which is true || ( true && true) ;
 Applying truth table, found True
 Assignment for < are 3, 2, 1 for x, y, z and then
 the value can be FALSE or TRUE
 3 < 2 || ( 2 < 1 && 1 < 3)
 It is False



FIRST ORDER LOGIC

 More expressive logic than propositional
 Constants are objects: john, apples
 Predicates are properties and relations:

 likes(john, apples)
 Functions transform objects:

 likes(john, fruit_of(apple_tree))
 Variables represent any object:  likes(X, apples)
 Quantifiers qualify values of variables

 True for all objects (Universal):              X. likes(X, apples)
 Exists at least one object (Existential):   X. likes(X, apples)



EXAMPLE: FOL SENTENCE

 “Every rose has a thorn”

 For all X
 if (X is a rose)
 then there exists Y

 (X has Y) and (Y is a thorn)



EXAMPLE: FOL SENTENCE

 “On Mondays and Wednesdays I go to John’s house 
for dinner”

 Note the change from “and” to “or”
– Translating is problematic



BEYOND TRUE AND FALSE

 Multi-valued logics
 More than two truth values
 e.g., true, false & unknown
 Fuzzy logic uses probabilities, truth value in [0,1]

 Modal logics
 Modal operators define mode for propositions
 Epistemic logics (belief)

 e.g. p (necessarily p), p (possibly p), …
 Temporal logics (time)

 e.g. p (always p), p (eventually p), …



TEMPORAL LOGIC
 used to describe any system of rules and symbolism 

for representing, and reasoning about, propositions 
qualified in terms of time. 

 We can then express statements like "I 
am always hungry", "I will eventually be hungry", or 
"I will be hungry until I eat something". 

 Temporal logic has found an important application 
in formal verification, where it is used to state 
requirements of hardware or software systems. For 
instance, one may wish to say that whenever a 
request is made, access to a resource 
is eventually granted, but it is never granted to two 
requestors simultaneously. Such a statement can 
conveniently be expressed in a temporal logic.



TEMPORAL LOGIC
 Temporal operators
 Temporal logic has two kinds of operators: logical 

operators and modal operators. Logical operators are 
usual truth-functional operators. The modal operators used 
in Linear Temporal Logic and Computation Tree Logic are 
defined as follows.



MODAL LOGIC
 a type of formal logic that extends the standards of formal logic to include 

the elements of modality (for example, possibility and necessity). 
 Modals qualify the truth of a judgment. For example, if it is true that 

"John is happy," we might qualify this statement by saying that "John 
is usually happy," in which case the term "usually" would be a modality. 

 Traditionally, there are three "modes" or "moods" or "modalities" 
represented in modal logic, namely, possibility, probability, and necessity.

 A formal modal logic represents modalities using modal operators. For 
example, "It might rain today" and "It is possible that rain will fall today" 
both contain the notion of possibility. In a modal logic this is represented 
as an operator, Possibly, attached to the sentence It will rain today.

 The basic unary (1-place) modal operators are usually written 
for Necessarily and  for Possibly. 

 In a classical modal logic, each can be expressed by the other 
with negation:

 Thus it is possible that it will rain today if and only if it is not 
necessary that it will not rain today;

 and it is necessary that it will rain today if and only if it is not 
possible that it will not rain today.



EPISTEMIC LOGIC
 Deals with the certainty of sentences. 
 The  operator is translated as "x knows that…", and the  operator is translated as 

"For all x knows, it may be true that…" 
 The following contrasts may help:

 A person, Jones, might reasonably say both: (1) "No, it is not possible that Bigfoot exists; I am 
quite certain of that"; and, (2) "Sure, Bigfoot possibly could exist". What Jones means by (1) is 
that given all the available information, there is no question remaining as to whether Bigfoot 
exists. This is an epistemic claim. By (2) he makes the metaphysical claim that it is possible 
for Bigfoot to exist, even though he does not (which is not equivalent to "it is possible 
that Bigfoot exists – for all I know", which contradicts (1)).

 Epistemic possibilities also bear on the actual world in a way that metaphysical 
possibilities do not. 

 Metaphysical possibilities bear on ways the world might have been, but epistemic 
possibilities bear on the way the world may be (for all we know). 
 Suppose, for example, that I want to know whether or not to take an umbrella before I leave. If you tell 

me "it is possible that it is raining outside" – in the sense of epistemic possibility – then that would 
weigh on whether or not I take the umbrella. But if you just tell me that "it is possible for it to rain 
outside" – in the sense of metaphysical possibility – then I am no better off for this bit of modal 
enlightenment.

 Some features of epistemic modal logic are in debate. For example, if x knows that p, 
does x know that it knows that p? That is to say, should pp be an axiom in 
these systems? While the answer to this question is unclear, there is at least one 
axiom that must be included in epistemic modal logic, because it is minimally true of 
all modal logics



DESCRIPTIVE LOGIC
 More expressive than propositional logic but has more 

efficient decision problems than first-order predicate 
logic.

 DL is used for formal reasoning on the concepts of an 
application domain  (known as terminological 
knowledge). 

 It is of particular importance in providing a logical 
formalism for Ontologies and the Semantic Web. 

 Notable application in bioinformatics where DL 
assists in the codification of medical knowledge.

 models concepts, roles and individuals, and their 
relationships.

 The fundamental modeling concept of a DL is 
the axiom - a logical statement relating roles and/or 
concepts. This is a key difference from 
the frames paradigm where a frame 
specification declares and completely defines a class.



LOGIC IS A GOOD REPRESENTATION

 Fairly easy to do the translation when possible
 Branches of mathematics devoted to it
 It enables us to do logical reasoning

 Tools and techniques come for free
 Basis for programming languages

 Prolog uses logic programs (a subset of FOL)
 Prolog based on HOL



NON-LOGICAL REPRESENTATIONS?

 Production rules
 Semantic networks

 Conceptual graphs
 Frames

 Logic representations have restricitions and can be 
hard to work with
 Many AI researchers searched for better representations



PRODUCTION RULES

 Rule set of <condition,action> pairs
 “if condition then action”

 Match-resolve-act cycle
 Match: Agent checks if each rule’s condition holds
 Resolve:

 Multiple production rules may fire at once (conflict set) 
 Agent must choose rule from set (conflict resolution)

 Act: If so, rule “fires” and the action is carried out
 Working memory:

 rule can write knowledge to working memory
 knowledge may match and fire other rules



PRODUCTION RULES EXAMPLE

 IF (at bus stop AND bus arrives) THEN action(get on 
the bus)

 IF (on bus AND not paid AND have oyster card) 
THEN action(pay with oyster) AND add(paid)

 IF (on bus AND paid AND empty seat) THEN sit 
down

 conditions and actions must be clearly defined
 can easily be expressed in first order logic!



GRAPHICAL REPRESENTATION

 Humans draw diagrams all the time, e.g.
 Causal relationships 

 And relationships between ideas



GRAPHICAL REPRESENTATION

 Graphs easy to store in a computer
 To be of any use must impose a formalism

 Jason is 15, Bryan is 40, Arthur is 70, Jim is 74
 How old is Julia?



SEMANTIC NETWORKS

 Because the syntax is the same
 We can guess that Julia’s age is similar to Bryan’s

 Formalism imposes restricted syntax



SEMANTIC NETWORKS

 Graphical representation (a graph)
 Links indicate subset, member, relation, ...

 Equivalent to logical statements (usually FOL)
 Easier to understand than FOL?
 Specialised SN reasoning algorithms can be faster

 Example: natural language understanding
 Sentences with same meaning have same graphs
 e.g. Conceptual Dependency Theory (Schank)



CONCEPTUAL GRAPHS

 Semantic network where each graph represents a 
single proposition

 Concept nodes can be
 Concrete (visualisable) such as restaurant, my dog Spot
 Abstract (not easily visualisable) such as anger

 Edges do not have labels
 Instead, conceptual relation nodes
 Easy to represent relations between multiple objects



FRAME REPRESENTATIONS

 Semantic networks where nodes have structure
 Frame with a number of slots (age, height, ...)
 Each slot stores specific item of information

 When agent faces a new situation
 Slots can be filled in (value may be another frame)
 Filling in may trigger actions
 May trigger retrieval of other frames

 Inheritance of properties between frames
 Very similar to objects in OOP



EXAMPLE: FRAME REPRESENTATION



FLEXIBILITY IN FRAMES

 Slots in a frame can contain
 Information for choosing a frame in a situation
 Relationships between this and other frames
 Procedures to carry out after various slots filled
 Default information to use where input is missing
 Blank slots: left blank unless required for a task
 Other frames, which gives a hierarchy

 Can also be expressed in first order logic



REPRESENTATION & LOGIC

 AI wanted “non-logical representations”
 Production rules
 Semantic networks

 Conceptual graphs, frames

 But all can be expressed in first order logic!
 Best of both worlds

 Logical reading ensures representation well-defined
 Representations specialised for applications
 Can make reasoning easier, more intuitive



LOGIC PROGRAMMING
 Logic programming offers a formalism for specifying a computation in terms of logical relations between 

entities.
 − logic program is a collection of logic statements.
 − programmer describes all relevant logical relationships between the various entities.
 − computation determines whether or not, a particular conclusion follows from those logical statements.
 • characteristics of Logic program
 Logic program is characterized by set of relations and inferences.
 − the program consists of a set of axioms and a goal statement.
 − the Rules of inference determine whether the axioms are sufficient to ensure the truth of the goal 

statement.
 − the execution of a logic program corresponds to the construction of a proof of the goal statement from the 

axioms.
 − the Programmer specify basic logical relationships, does not specify the manner in which inference rules 

are applied.
 Thus Logic + Control = Algorithms
 • Examples of Logic Statements
 − Statement
 A grand-parent is a parent of a parent.
 − Statement expressed in more closely related logic terms as 

 A person is a grand-parent if she/he has a child and that child is a parent.
 − Statement expressed in first order logic as

 (for all) x: grand-parent(x) ← (there exist) y, z : parent(x, y) & parent(y, z)



LOGIC PROGRAMMING
 Logic programming Language
 A programming language includes :
 − the syntax
 − the semantics of programs and
 − the computational model.
 There are many ways of organizing computations.
 The most familiar paradigm is procedural. The program specifies a 

computation by saying "how" it is to be performed. FORTRAN, C, and 
object-oriented languages fall under this general approach.

 Another paradigm is declarative. The program specifies a 
computation by giving the properties of a correct answer. Prolog and 
logic data language (LDL) are examples of declarative languages, 
emphasize the logical properties of a computation.

 Prolog and LDL are called logic programming languages.
 PROLOG is the most popular Logic programming system.



LOGIC PROGRAMMING
 • Syntax and terminology (relevant to Prolog 

programs)
 In any language, the formation of components (expressions, 

statements, etc.), is guided by syntactic rules. The 
components are divided into two parts: (A) data 
components and (B) program components.

 (A) Data components :
 Data components are collection of data objects that follow 

hierarchy.
 Data object of any kind is also called a term. A term is 

a constant, a variable or a compound term.
 Simple data object is not decomposable; e.g. atoms, 

numbers, constants, variables. The syntax distinguishes 
the data objects, hence

 no need for declaring them.
 Structured data object are made of several 

components; e.g. general, special structure.



LOGIC PROGRAMMING
 (a) Data objects : The data objects of any kind is 

called a term.
 ◊ Term : examples
 ‡ Constants: denote elements such as integers, 

floating point, atoms.
 ‡ Variables: denote a single but unspecified element; 

symbols for variables begin with an uppercase letter or an 
underscore.

 ‡ Compound terms: comprise a functor and sequence 
of one or more compound terms called arguments.
 Functor : is characterized by its name, which is an 

atom, and its arity or number of arguments.
 ƒ/n = ƒ( t1 , t2, . . . tn )
 where ƒ is name of the functor and is of arity n
 ti 's are the arguments
 ƒ/n denotes functor ƒ of arity n

 Functors with the same name but different arities are distinct.
 ‡ Ground and non-ground: Terms are ground if they 

contain no variables; otherwise they are non-ground. 
Goals are atoms or compound terms, and are generally non-
ground.



 (b) Simple data objects : Atoms, Numbers, Variables
 ◊ Atoms

 a lower-case letter, possibly followed by other letters (either 
case), digits, and underscore character. 
 e.g. a  greaterThan two_B_or_not_2_b

 a string of special characters such as: + - * / \ = ^ < > : . ~ @ # $ 
&
 e.g. <> ##&& ::=

 a string of any characters enclosed within single quotes.
 e.g. 'ABC' '1234' 'a<>b‘

 following are also atoms ! ; [] {}
 ◊ Numbers

 ‡ applications involving heavy numerical calculations are rarely 
written in Prolog.

 ‡ integer representation: e.g. 0 -16 33 +100
 ‡ real numbers written in standard or scientific notation,

 e.g. 0.5 -3.1416 6.23e+23 11.0e-3 -2.6e-2
 ◊ Variables

 ‡ begins by a capital letter, possibly followed by other letters (either 
case), digits, and underscore character.
 e.g. X25 List Noun_Phrase



 (c) Structured data objects : General Structures , Special Structures
 ◊ General Structures

 ‡ a structured term is syntactically formed by a functor and a list of 
arguments.

 ‡ functor is an atom.
 ‡ list of arguments appears between parentheses.
 ‡ arguments are separated by a comma.
 ‡ each argument is a term (i.e., any Prolog data object).
 ‡ the number of arguments of a structured term is called its arity.
 ‡ e.g. greaterThan(9, 6) f(a, g(b, c), h(d)) plus(2, 3, 5)

 Note : a structure in Prolog is a mechanism for combining terms together,
 like integers 2, 3, 5 are combined with the functor plus.
 ◊ Special Structures
 ‡ In Prolog an ordered collection of terms is called a list .
 ‡ Lists are structured terms and Prolog offers a convenient notation to
 represent them:
 * Empty list is denoted by the atom [ ].
 * Non-empty list carries element(s) between square brackets, separating 

elements by comma.
 e.g. [bach, bee] [apples, oranges, grapes] []



 (B) Program Components
 A Prolog program is a collection of predicates or rules. A 

predicate establishes a relationships between objects.
 (a) Clause, Predicate, Sentence, Subject

 ‡ Clause is a collection of grammatically-related words .
 ‡ Predicate is composed of one or more clauses.
 ‡ Clauses are the building blocks of sentences; every 

sentence contains one or more clauses.
 ‡ A Complete Sentence has two parts: subject and 

predicate.
 o subject is what (or whom) the sentence is about.
 o predicate tells something about the subject.

 ‡ Example 1 : "cows eat grass".
 It is a clause, because it contains the subject "cows" and the predicate 

"eat grass."
 ‡ Example 2 : "cows eating grass are visible from 

highway"
 This is a complete clause. The subject "cows eating grass" and the 

predicate "are visible from the highway" makes complete thought.



 (b) Predicates & Clause
 Syntactically a predicate is composed of one or 

more clauses.
 ‡ The general form of clauses is :
 <left-hand-side> :- <right-hand-side>.
 where LHS is a single goal called "goal" and
 RHS is composed of one or more goals, separated 

by commas, called "sub-goals" of the goal on left-
hand side.



 ‡ Example : grand_parent (X, Y) :- parent(X, Z), parent(Z, Y).
 parent (X, Y) :- mother(X, Y).
 parent (X, Y) :- father(X, Y).
 ‡ Interpretation:
 * a clause specifies the conditional truth of the goal on the LHS;
 i.e., goal on LHS is assumed to be true if the sub-goals on RHS are all true. A 

predicate is true if at least one of its clauses is true.
 * An individual "Y" is the grand-parent of "X" if a parent of that same 

"X" is "Z" and "Y" is the parent of that "Z".



 (c) Unit Clause - a special Case
 Unlike the previous example of conditional truth, one often 

encounters unconditional relationships that hold.
 ‡ In Prolog the clauses that are unconditionally true 

are called unit clause or fact
 ‡ Example : Unconditionally relationships say 'Y' is the 

father of 'X' is unconditionally true.
 This relationship as a Prolog clause is :
 father(X, Y) :- true.
 Interpreted as relationship of father between Y and X is 

always true;
 or simply stated as Y is father of X
 ‡ Goal true is built-in in Prolog and always holds.
 ‡ Prolog offers a simpler syntax to express unit clause 

or fact
 father(X, Y)
 ie the :- true part is simply omitted.



 (d) Queries
 In Prolog the queries are statements called directive. A 

special case of
 directives, are called queries.
 ‡ Syntactically, directives are clauses with an empty 

left-hand side.
 Example : ? - grandparent(X, W).
 This query is interpreted as : Who is a grandparent of X ?
 By issuing queries, Prolog tries to establish the validity of 

specific relationships.
 ‡ The result of executing a query is either success or 

failure
 Success, means the goals specified in the query 

holds according to the facts and rules of the program.
 Failure, means the goals specified in the query does 

not hold according to the facts and rules of the program.



PROGRAMMING PARADIGMS : MODELS
OF COMPUTATION

 A complete description of a programming language 
includes the computational model, syntax, semantics, 
and pragmatic  onsiderations that shape the 
language.

 Models of Computation :
 A computational model is a collection of values and  

operations, while computation is the application of a 
sequence of operations to a value to yield another 
value. There are three basic computational models :

 (a) Imperative, (b) Functional, and (c) Logic. In 
addition to these, there are two programming 
paradigms (concurrent and object-oriented 
programming). While, they are not models of 
computation, they rank in importance with 
computational models.



 (a) Imperative Model :
 The Imperative model of computation, consists of a state and 

an operation of assignment which is used to modify the state. 
Programs consist of sequences of commands. The 
computations are changes in the state.

 Example 1 : Linear function
 A linear function y = 2x + 3 can be written as 

 Y := 2 ∗ X + 3
 The implementation determines the value of X in the state and 

then create a new state, which differs from the old state. The 
value of Y in the new state is the value that 2 ∗ X + 3 had in 
the old state.

 Old State: X = 3, Y = -2,
 Y := 2 ∗ X + 3

 New State: X = 3, Y = 9,
 The imperative model is closest to the hardware model on 

which programs are executed, that makes it most efficient 
model in terms of execution time.



 (b) Functional model :
 The Functional model of computation, consists of a set of values, 

functions, and the operation of functions. The functions may be 
named and may be composed with other functions. They can take 
other functions as arguments and return results. The programs 
consist of definitions of functions. The computations are application of 
functions to values.

 ‡ Example 1 : Linear function
 A linear function y = 2x + 3 can be defined as :

 f (x) = 2 ∗ x + 3
 ‡ Example 2 : Determine a value for Circumference.
 Assigned a value to Radius, that determines a value for 

Circumference.
 Circumference = 2 × pi × radius where pi = 3.14
 Generalize Circumference with the variable "radius" ie

Circumference(radius) = 2 × pi × radius , where pi = 3.14
 Functional models are developed over many years. The notations and 

methods form the base upon which problem solving methodologies 
rest.



 (c) Logic model :
 The logic model of computation is based on relations and logical inference. 

Programs consist of definitions of relations. Computations are inferences 
(is a proof).

 ‡ Example 1 : Linear function
 A linear function y = 2x + 3 can be represented as : f (X , Y) if Y is 2 ∗ X + 3.
 ‡ Example 2: Determine a value for Circumference.
 The earlier circumference computation can be represented as:
 Circle (R , C) if Pi = 3.14 and C = 2 ∗ pi ∗ R.
 The function is represented as a relation between radious R and 

circumference C.
 ‡ Example 3: Determine the mortality of Socrates.
 The program is to determine the mortality of Socrates. The fact given that 

Socrates is human.
 The rule is that all humans are mortal, that is
 for all X, if X is human then X is mortal.
 To determine the mortality of Socrates, make the assumption that there 

are no mortals, that is ¬ mortal (Y)



 ‡ The fact and rule are:
 human (Socrates)
 mortal (X) if human (X)

 ‡ To determine the mortality of Socrates, make the assumption that there are no mortals i.e. ¬ 
mortal (Y)

 ‡ Explanation :
 * The 1st line is the statement "Socrates is a man."
 * The 2nd line is a phrase "all human are mortal” into the equivalent "for all X, if X is a man then X is 

mortal".
 * The 3rd line is added to the set to determine the mortality of Socrates.
 * The 4th line is the deduction from lines 2 and 3. It is justified by the inference rule modus tollens

which states that if the conclusion of a rule is known to be false, then so is the hypothesis.
 * Variables X and Y are unified because they have same value.
 * By unification, Lines 5, 4b, and 1 produce contradictions and identify Socrates as mortal.
 * Note that, resolution is the an inference rule which looks for a contradiction and it is facilitated by 

unification which determines if there is a substitution which makes two terms the same.
 Logic model formalizes the reasoning process. It is related to relational
 data bases and expert systems.


