
Materials

Ch 2 & 3 of Artificial Intelligence A Systems 
Approach by Tim Jones

Chapters 3 and 4 of Artificial Intelligence a 
Modern Approach by Russell and Norvig



Problem solving, search and control 
strategies



GENERAL PROBLEM SOLVING



GENERAL PROBLEM SOLVING



GENERAL PROBLEM SOLVING



GENERAL PROBLEM SOLVING



AI: SEARCH AND CONTROL STRATEGIES









14 Jan 2004 CS 3243 - Blind Search 11

Tree search algorithms

• Basic idea:
– offline, simulated exploration of state space by generating 

successors of already-explored states (a.k.a.~expanding
states)

–



14 Jan 2004 CS 3243 - Blind Search 12

Tree search example



14 Jan 2004 CS 3243 - Blind Search 13

Tree search example



14 Jan 2004 CS 3243 - Blind Search 14

Tree search example



14 Jan 2004 CS 3243 - Blind Search 15

Implementation: general tree search



14 Jan 2004 CS 3243 - Blind Search 16

Implementation: states vs. nodes

• A state is a (representation of) a physical configuration
• A node is a data structure constituting part of a search tree 

includes state, parent node, action, path cost g(x), depth

• The Expand function creates new nodes, filling in the various 
fields and using the SuccessorFn of the problem to create 
the corresponding states.

•



Search strategies

• A search strategy is defined by picking the order of node 
expansion

• Strategies are evaluated along the following dimensions:
– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?
–

• Time and space complexity are measured in terms of 
– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)
–



Uninformed search strategies

• Uninformed search strategies use only the information available in the 
problem definition

•
• Breadth-first search

•
• Depth-first search

•
• Depth-limited search

•
• Iterative deepening search

•



Breadth-first search

• Expand shallowest unexpanded node

•
• Implementation:

– fringe is a FIFO queue, i.e., new successors go at 
end

–



14 Jan 2004 CS 3243 - Blind Search 20

Breadth-first search

• Expand shallowest unexpanded node

•
• Implementation:

– fringe is a FIFO queue, i.e., new successors go at 
end

–



14 Jan 2004 CS 3243 - Blind Search 21

Breadth-first search

• Expand shallowest unexpanded node

•
• Implementation:

– fringe is a FIFO queue, i.e., new successors go at 
end

–



14 Jan 2004 CS 3243 - Blind Search 22

Breadth-first search

• Expand shallowest unexpanded node

•
• Implementation:

– fringe is a FIFO queue, i.e., new successors go at 
end

–



14 Jan 2004 CS 3243 - Blind Search 23

Properties of breadth-first search

• Complete? Yes (if b is finite)
•
• Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)
•
• Space? O(bd+1) (keeps every node in memory)
•
• Optimal? Yes (if cost = 1 per step)
•

• Space is the bigger problem (more than time)
•



14 Jan 2004 CS 3243 - Blind Search 24

Depth-first search

• Expand deepest unexpanded node

•
• Implementation:

– fringe = LIFO queue, i.e., put successors at front

–



14 Jan 2004 CS 3243 - Blind Search 25

Depth-first search

• Expand deepest unexpanded node

•
• Implementation:

– fringe = LIFO queue, i.e., put successors at front

–



14 Jan 2004 CS 3243 - Blind Search 26

Depth-first search

• Expand deepest unexpanded node

•
• Implementation:

– fringe = LIFO queue, i.e., put successors at front

–



14 Jan 2004 CS 3243 - Blind Search 27

Depth-first search

• Expand deepest unexpanded node

•
• Implementation:

– fringe = LIFO queue, i.e., put successors at front

–



14 Jan 2004 CS 3243 - Blind Search 28

Depth-first search

• Expand deepest unexpanded node

•
• Implementation:

– fringe = LIFO queue, i.e., put successors at front

–



14 Jan 2004 CS 3243 - Blind Search 29

Depth-first search

• Expand deepest unexpanded node

•
• Implementation:

– fringe = LIFO queue, i.e., put successors at front

–



14 Jan 2004 CS 3243 - Blind Search 30

Depth-first search

• Expand deepest unexpanded node

•
• Implementation:

– fringe = LIFO queue, i.e., put successors at front

–



14 Jan 2004 CS 3243 - Blind Search 31

Depth-first search

• Expand deepest unexpanded node

•
• Implementation:

– fringe = LIFO queue, i.e., put successors at front

–



14 Jan 2004 CS 3243 - Blind Search 32

Depth-first search

• Expand deepest unexpanded node

•
• Implementation:

– fringe = LIFO queue, i.e., put successors at front

–



14 Jan 2004 CS 3243 - Blind Search 33

Depth-first search

• Expand deepest unexpanded node

•
• Implementation:

– fringe = LIFO queue, i.e., put successors at front

–



14 Jan 2004 CS 3243 - Blind Search 34

Depth-first search

• Expand deepest unexpanded node

•
• Implementation:

– fringe = LIFO queue, i.e., put successors at front

–



14 Jan 2004 CS 3243 - Blind Search 35

Depth-first search

• Expand deepest unexpanded node

•
• Implementation:

– fringe = LIFO queue, i.e., put successors at front

–



14 Jan 2004 CS 3243 - Blind Search 36

Properties of depth-first search

• Complete? No: fails in infinite-depth spaces, spaces with loops
– Modify to avoid repeated states along path
–

 complete in finite spaces

• Time? O(bm): terrible if m is much larger than d
– but if solutions are dense, may be much faster than breadth-first
–

• Space? O(bm), i.e., linear space!
•
• Optimal? No
•



Depth – Limited search
• Alleviating the embarrassing failure of depth-first search in 

infinite state spaces by supplying depth-first search with a 
predetermined depth-limit of l. 

• Nodes at depth l are treated as if they have no successors. 

• Unfortunately, it also introduces an additional source of 
incompleteness if we choose l<d

• It will also be non-optimal if we choose l>d

• ts time complexity is O(bl)and its space complexity is O(bl). 

• Depth-first search can be viewed as a special case of depth-
limited search with l=∞.

• depth-limited search has two modes of failure:
• standard failure - no solution.

• cutoff failure - no solution within the depth limit



Depth-limited search

= depth-first search with depth limit l,

i.e., nodes at depth l have no successors

• Recursive implementation:



Iterative deepening search

general strategy, often used in combination with depth-first tree search, that finds 
the best depth limit. It does this by gradually increasing the limit - first 0, then 1, 
then 2, and so on - until a goal is found. This will occure when the depth 
reaches d, the depth of the shallowest goal node. The algorithm is shown in Figure 
DFS-15:

Combines the benefits of depth-first search and breadth-first search.
Memory requirements are: O(bd)
N(IterativeDeepeningSearch)=(d)b + (d-1)b2 + ... + (1)b2

This gives a time complexity of O(bd)



14 Jan 2004 CS 3243 - Blind Search 40

Iterative deepening search l =0



14 Jan 2004 CS 3243 - Blind Search 41

Iterative deepening search l =1



14 Jan 2004 CS 3243 - Blind Search 42

Iterative deepening search l =2



14 Jan 2004 CS 3243 - Blind Search 43

Iterative deepening search l =3



14 Jan 2004 CS 3243 - Blind Search 44

Iterative deepening search
• Number of nodes generated in a depth-limited search to depth d with 

branching factor b: 
NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening search to depth d
with branching factor b: 

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

• For b = 10, d = 5,
•

– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
–
– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456
–

• Overhead = (123,456 - 111,111)/111,111 = 11%



14 Jan 2004 CS 3243 - Blind Search 45

Properties of iterative deepening search

• Complete? Yes

•
• Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

•
• Space? O(bd)

•
• Optimal? Yes, if step cost = 1



14 Jan 2004 CS 3243 - Blind Search 46

Summary of algorithms



14 Jan 2004 CS 3243 - Blind Search 47

Graph search



Summary

• Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be 
explored

•

• Variety of uninformed search strategies

•

• Iterative deepening search uses only linear space and not 
much more time than other uninformed algorithms

•


