
Heuristic Search  

The search techniques we have seen so far... 

 

• Breadth first search 

• Uniform cost search 

• Depth first search 

• Depth limited search  

• Iterative Deepening 

• Bi-directional Search 

 

 

...are all too slow for most real world problems 

uninformed search 

blind search 



Sometimes we can tell that some states 

appear better that others...  
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...we can use this knowledge of the relative merit of states to guide search 

Heuristic Search (informed search)  
 

A Heuristic is a function that, when applied to a state, returns a 

number that is an estimate of the merit of the state, with respect to 

the goal. 

 

In other words, the heuristic tells us approximately how far the state 

is from the goal state*.  

 

Note we said “approximately”. Heuristics might underestimate or 

overestimate the merit of a state.  But for reasons which we will see, 

heuristics that only underestimate are very desirable, and are called 

admissible.  

*I.e Smaller numbers are better 



Heuristics for 8-puzzle I 

•The number of 

misplaced tiles 

(not including 

the blank) 
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In this case, only “8” is misplaced, so the heuristic 

function evaluates to 1. 
In other words, the heuristic is telling us, that it thinks a 

solution might be available in just 1 more move. 
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Notation:   h(n)            h(current state) = 1  



Heuristics for 8-puzzle II 

•The Manhattan 

Distance (not 

including the 

blank) 

In this case, only the “3”, “8” and “1” tiles are 

misplaced, by 2, 3, and 3 squares respectively,  so 

the heuristic function evaluates to 8. 
In other words, the heuristic is telling us, that it thinks a 

solution is available in just 8 more moves. 
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Notation:   h(n)            h(current state) = 8  
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We can use heuristics 

to guide “hill climbing” 

search.  

 

In this example, the 

Manhattan Distance 

heuristic helps us 

quickly find a solution 

to the 8-puzzle.    

But “hill climbing has 

a problem...” 

h(n) 
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In this example, 

hill climbing 

does not work! 

 

All the nodes 

on the fringe 

are taking a step 

“backwards” 

(local minima) 

 

Note that this 

puzzle is 

solvable in just 

12 more steps. 

h(n) 



We have seen two interesting algorithms. 
 

Uniform Cost  

• Measures the cost to each node. 

• Is optimal and complete! 

• Can be very slow. 

 

Hill Climbing 
• Estimates how far away the goal is. 

• Is neither optimal nor complete. 

• Can be very fast. 

 

Can we combine them to create an optimal and complete 

algorithm that is also very fast? 

 



Uniform Cost Search 
Enqueue nodes in order of cost 

Intuition: Expand the cheapest node. Where 

the cost is the path cost g(n)  
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Hill Climbing Search 
Enqueue nodes in order of  estimated distance to goal 

Intuition: Expand the node you think is nearest to 

goal. Where the estimate of distance to goal is h(n)  
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The A* Algorithm (“A-Star”) 

 Enqueue nodes in order of estimate cost to goal, f(n)  
g(n) is the cost to get to a node. 

h(n) is the estimated distance to the goal. 

 

f(n) = g(n)  + h(n)  

 
We can think of f(n) as the estimated cost of the cheapest solution that goes through node n 

 

Note that we can use the general search algorithm we used before. 

All that we have changed is the queuing strategy. 

If the heuristic is optimistic, that is to say, it never overestimates 

the distance to the goal, then… 

 

A* is optimal and complete! 



Informal proof outline of A* completeness 

• Assume that every operator has some minimum positive cost, 

epsilon . 

• Assume that a goal state exists, therefore some finite set of 

operators lead to it. 

•Expanding nodes produces paths whose actual costs increase by 

at least epsilon each time. Since the algorithm will not terminate 

until it finds a goal state, it must expand a goal state in finite time. 

 

Informal proof outline of A* optimality  

• When A* terminates, it has found a goal state 

• All remaining nodes have an estimate cost to goal (f(n)) greater 

than or equal to that of goal we have found. 

•Since the heuristic function was optimistic, the actual cost to goal 

for these other paths can be no better than the cost of the one we 

have already found. 



How fast is A*? 

A* is the fastest search algorithm. That is, for any given 

heuristic, no algorithm can expand fewer nodes than A*. 

 

How fast is it? Depends of the quality of the heuristic. 

 

•If the heuristic is useless (ie h(n) is hardcoded to equal 0 ), the 

algorithm degenerates to uniform cost. 

 

•If the heuristic is perfect, there is no real search, we just 

march down the tree to the goal. 

 

Generally we are somewhere in between the two situations 

above. The time taken depends on the quality of the heuristic. 



What is A*’s space complexity? 

A* has worst case O(bd) space complexity, but an iterative 

deepening version is possible ( IDA*  ) 



A Worked Example: Maze Traversal  
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Problem: To get from square A3 to 

square E2, one step at a time, avoiding 

obstacles (black squares). 

 

Operators: (in order) 

•go_left(n)  

•go_down(n)  

•go_right(n)  

each operator costs 1. 

 

Heuristic: Manhattan distance 



 

 

Operators: (in order) 

•go_left(n)  

•go_down(n)  

•go_right(n)  

each operator costs 1. 
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Operators: (in order) 

•go_left(n)  

•go_down(n)  

•go_right(n)  

each operator costs 1. 
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Operators: (in order) 

•go_left(n)  

•go_down(n)  

•go_right(n)  

each operator costs 1. 
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Operators: (in order) 

•go_left(n)  

•go_down(n)  

•go_right(n)  

each operator costs 1. 
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Operators: (in order) 

•go_left(n)  

•go_down(n)  

•go_right(n)  

each operator costs 1. 
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