
Heuristic Search

The search techniques we have seen so far...

• Breadth first search

• Uniform cost search

• Depth first search

• Depth limited search

• Iterative Deepening

• Bi-directional Search

...are all too slow for most real world problems

uninformed search

blind search

Sometimes we can tell that some states

appear better that others...

1 2 3

4 5 6

7 8

7 8 4

3 5 1

6 2

FWD

C FW C

D

...we can use this knowledge of the relative merit of states to guide search

Heuristic Search (informed search)

A Heuristic is a function that, when applied to a state, returns a

number that is an estimate of the merit of the state, with respect to

the goal.

In other words, the heuristic tells us approximately how far the state

is from the goal state*.

Note we said “approximately”. Heuristics might underestimate or

overestimate the merit of a state. But for reasons which we will see,

heuristics that only underestimate are very desirable, and are called

admissible.

*I.e Smaller numbers are better

Heuristics for 8-puzzle I

•The number of

misplaced tiles

(not including

the blank)

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

N N N

N N N

N Y

In this case, only “8” is misplaced, so the heuristic

function evaluates to 1.
In other words, the heuristic is telling us, that it thinks a

solution might be available in just 1 more move.

Goal

State

Current

State

Notation: h(n) h(current state) = 1

Heuristics for 8-puzzle II

•The Manhattan

Distance (not

including the

blank)

In this case, only the “3”, “8” and “1” tiles are

misplaced, by 2, 3, and 3 squares respectively, so

the heuristic function evaluates to 8.
In other words, the heuristic is telling us, that it thinks a

solution is available in just 8 more moves.

3 2 8

4 5 6

7 1

1 2 3

4 5 6

7 8

Goal

State

Current

State

3 3

8

8

1

1

2 spaces

3 spaces

3 spaces

Total 8

Notation: h(n) h(current state) = 8

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 3

4 2 5

7 8 6

1 2

4 5 3

7 8 6

1 2 3

4 5 6

7 8

1 2 3

4 5

7 8 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2

4 8 3

7 6 5

1 2 3

4 8

7 6 5

5

6 4

3

4 2

1 3 3

0 2

We can use heuristics

to guide “hill climbing”

search.

In this example, the

Manhattan Distance

heuristic helps us

quickly find a solution

to the 8-puzzle.

But “hill climbing has

a problem...”

h(n)

1 2 3

4 5 8

6 7

1 2 3

4 5

6 7 8

1 2 3

4 5 8

6 7

1 2 3

4 5

6 7 8

1 2

4 5 3

6 7 8

6

7 5

6 6

In this example,

hill climbing

does not work!

All the nodes

on the fringe

are taking a step

“backwards”

(local minima)

Note that this

puzzle is

solvable in just

12 more steps.

h(n)

We have seen two interesting algorithms.

Uniform Cost

• Measures the cost to each node.

• Is optimal and complete!

• Can be very slow.

Hill Climbing
• Estimates how far away the goal is.

• Is neither optimal nor complete.

• Can be very fast.

Can we combine them to create an optimal and complete

algorithm that is also very fast?

Uniform Cost Search
Enqueue nodes in order of cost

Intuition: Expand the cheapest node. Where

the cost is the path cost g(n)

2 5 2 5

1 7

2 5

1 7

4 5

Hill Climbing Search
Enqueue nodes in order of estimated distance to goal

Intuition: Expand the node you think is nearest to

goal. Where the estimate of distance to goal is h(n)

19 17 19 17

16 14

13 15

19 17

16 14

The A* Algorithm (“A-Star”)

 Enqueue nodes in order of estimate cost to goal, f(n)
g(n) is the cost to get to a node.

h(n) is the estimated distance to the goal.

f(n) = g(n) + h(n)

We can think of f(n) as the estimated cost of the cheapest solution that goes through node n

Note that we can use the general search algorithm we used before.

All that we have changed is the queuing strategy.

If the heuristic is optimistic, that is to say, it never overestimates

the distance to the goal, then…

A* is optimal and complete!

Informal proof outline of A* completeness

• Assume that every operator has some minimum positive cost,

epsilon .

• Assume that a goal state exists, therefore some finite set of

operators lead to it.

•Expanding nodes produces paths whose actual costs increase by

at least epsilon each time. Since the algorithm will not terminate

until it finds a goal state, it must expand a goal state in finite time.

Informal proof outline of A* optimality

• When A* terminates, it has found a goal state

• All remaining nodes have an estimate cost to goal (f(n)) greater

than or equal to that of goal we have found.

•Since the heuristic function was optimistic, the actual cost to goal

for these other paths can be no better than the cost of the one we

have already found.

How fast is A*?

A* is the fastest search algorithm. That is, for any given

heuristic, no algorithm can expand fewer nodes than A*.

How fast is it? Depends of the quality of the heuristic.

•If the heuristic is useless (ie h(n) is hardcoded to equal 0), the

algorithm degenerates to uniform cost.

•If the heuristic is perfect, there is no real search, we just

march down the tree to the goal.

Generally we are somewhere in between the two situations

above. The time taken depends on the quality of the heuristic.

What is A*’s space complexity?

A* has worst case O(bd) space complexity, but an iterative

deepening version is possible (IDA*)

A Worked Example: Maze Traversal

1 2 3 4 5

A

B

D

C

E

Problem: To get from square A3 to

square E2, one step at a time, avoiding

obstacles (black squares).

Operators: (in order)

•go_left(n)

•go_down(n)

•go_right(n)

each operator costs 1.

Heuristic: Manhattan distance

Operators: (in order)

•go_left(n)

•go_down(n)

•go_right(n)

each operator costs 1.

A2

A3

B3 A4
g(A2) = 1

h(A2) = 4

g(B3) = 1

h(B3) = 4

g(A4) = 1

h(A4) = 6

1 2 3 4 5

A

B

D

C

E

A2

B3

A4

Operators: (in order)

•go_left(n)

•go_down(n)

•go_right(n)

each operator costs 1.

A2

A3

B3 A4
g(A2) = 1

h(A2) = 4

g(B3) = 1

h(B3) = 4

g(A4) = 1

h(A4) = 6

A1
g(A1) = 2

h(A1) = 5

1 2 3 4 5

A

B

D

C

E

A2

B3

A1 A4

Operators: (in order)

•go_left(n)

•go_down(n)

•go_right(n)

each operator costs 1.

A2

A3

B3 A4
g(A2) = 1

h(A2) = 4

g(B3) = 1

h(B3) = 4

g(A4) = 1

h(A4) = 6

C3 B4
g(C3) = 2

h(C3) = 3

g(B4) = 2

h(B4) = 5

A1
g(A1) = 2

h(A1) = 5

1 2 3 4 5

A

B

D

C

E

A2

B3

A4 A1

C3

B4

Operators: (in order)

•go_left(n)

•go_down(n)

•go_right(n)

each operator costs 1.

A2

A3

B3 A4
g(A2) = 1

h(A2) = 4

g(B3) = 1

h(B3) = 4

g(A4) = 1

h(A4) = 6

C3 B4
g(C3) = 2

h(C3) = 3

g(B4) = 2

h(B4) = 5

A1
g(A1) = 2

h(A1) = 5

1 2 3 4 5

A

B

D

C

E

B1
g(B1) = 3

h(B1) = 4

A2

B3

A4 A1

B1

C3

B4

Operators: (in order)

•go_left(n)

•go_down(n)

•go_right(n)

each operator costs 1.

A2

A3

B3 A4
g(A2) = 1

h(A2) = 4

g(B3) = 1

h(B3) = 4

g(A4) = 1

h(A4) = 6

C3 B4
g(C3) = 2

h(C3) = 3

g(B4) = 2

h(B4) = 5

A1
g(A1) = 2

h(A1) = 5

1 2 3 4 5

A

B

D

C

E

B1
g(B1) = 3

h(B1) = 4

B5
g(B5) = 3

h(B5) = 6

A2

B3

A4 A1

B1

C3

B4 B5

