
Uninformed

Search

Methods

Search Algorithms

• Uninformed Blind search

– Breadth-first

– uniform first

– depth-first

– Iterative deepening depth-first

– Bidirectional

– Branch and Bound

• Informed Heuristic search

– Greedy search, hill climbing, Heuristics

• Important concepts:

– Completeness

– Time complexity

– Space complexity

– Quality of solution

Tree-based Search

• Basic idea:

– Exploration of state space by generating successors of already-

explored states (a.k.a. expanding states).

– Every state is evaluated: is it a goal state?

• In practice, the solution space can be a graph, not a tree

– E.g., 8-puzzle

– More general approach is graph search

– Tree search can end up repeatedly visiting the same nodes

• Unless it keeps track of all nodes visited

• …but this could take vast amounts of memory

4

Tree searches

• A tree search starts at the root

and explores nodes from

there, looking for a goal node

(a node that satisfies certain

conditions, depending on the

problem)

• For some problems, any goal

node is acceptable (N or J);

for other problems, you want

a minimum-depth goal node,

that is, a goal node nearest the

root (only J)

L M N O P

G

Q

H J I K

F E D

B C

A

Goal nodes

Tree search example

Tree search example

Tree search example

Tree search example

This “strategy” is

what differentiates

different search

algorithms

States versus Nodes
• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree contains info such as: state, parent

node, action, path cost g(x), depth

• The Expand function creates new nodes, filling in the various fields and using the

SuccessorFn of the problem to create the corresponding states.

Search Tree for the 8 puzzle

problem

Search Strategies

• A search strategy is defined by picking the order of node expansion

• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?

– time complexity: number of nodes generated

– space complexity: maximum number of nodes in memory

– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of

– b: maximum branching factor of the search tree

– d: depth of the least-cost solution

– m: maximum depth of the state space (may be ∞)

Evaluation of Search Algorithms
• Completeness

– does it always find a solution if one exists?

• Optimality

– does it always find a least-cost (or min depth) solution?

• Time complexity

– number of nodes generated (worst case)

• Space complexity

– number of nodes in memory (worst case)

• Time and space complexity are measured in terms of

– b: maximum branching factor of the search tree

– d: depth of the least-cost solution

– m: maximum depth of the state space (may be ∞)

Breadth-First Search (BFS)

• Expand shallowest unexpanded node

• Fringe: nodes waiting in a queue to be explored, also called OPEN

• Implementation:

– For BFS, fringe is a first-in-first-out (FIFO) queue

– new successors go at end of the queue

• Repeated states?

– Simple strategy: do not add parent of a node as a leaf

14

How to do breadth-first searching

• Put the root node on a queue;
while (queue is not empty) {
 remove a node from the queue;
 if (node is a goal node) return success;
 put all children of node onto the queue;
}
return failure;

• Just before starting to explore level n, the queue holds all
the nodes at level n-1

• In a typical tree, the number of nodes at each level increases
exponentially with the depth

• Memory requirements may be infeasible

• When this method succeeds, it doesn’t give the path

• There is no “recursive” breadth-first search equivalent to
recursive depth-first search

15

Breadth-first searching

• A breadth-first search (BFS)

explores nodes nearest the root

before exploring nodes further

away

• For example, after searching A,

then B, then C, the search

proceeds with D, E, F, G

• Node are explored in the order
A B C D E F G H I J K L M N O
P Q

• J will be found before N L M N O P

G

Q

H J I K

F E D

B C

A

Example: Map Navigation

S G

A B

D E

C

F

State Space:
S = start, G = goal, other nodes = intermediate states, links = legal transitions

BFS Search Tree

S S G

A B

D E

C

F

Queue = {S}

Select S

Goal(S) = true?

If not, Expand(S)

BFS Search Tree
S S G

A B

D E

C

F
A D

Queue = {A, D}

Select A

Goal(A) = true?

If not, Expand(A)

BFS Search Tree
S S G

A B

D E

C

F
A D

B D

Queue = {D, B, D}

Select D

Goal(D) = true?

If not, expand(D)

BFS Search Tree
S S G

A B

D E

C

F
A D

A E B D

Queue = {B, D, A, E}

Select B
etc.

BFS Search Tree
S S G

A B

D E

C

F
A D

A E B D

B F E S E S B C

Level 3
Queue = {C, E, S, E, S, B, B, F}

BFS Search Tree
S S G

A B

D E

C

F
A D

A E B D

B F E S E S B

G D F B F A D C E A C

C

Level 4
Expand queue until G is at front
Select G
Goal(G) = true

Breadth-First

Search

Complexity of Breadth-First Search

• Time Complexity

– assume (worst case) that there is 1

goal leaf at the RHS at depth d

– so BFS will generate

 = b + b2+ + bd + bd+1 - b

 = O (bd+1)

• Space Complexity

– how many nodes can be in the

queue (worst-case)?

– at depth d there are bd+1

unexpanded nodes in the Q = O

(bd+1)

d=0

d=1

d=2

d=0

d=1

d=2
G

G

Breadth-First Search (BFS)

Properties

• Complete? Yes

• Optimal? Only if path-cost = non-decreasing function of depth

• Time complexity O(bd)

• Space complexity O(bd)

• Main practical drawback? exponential space complexity

Examples of Time and Memory Requirements for Breadth-First

Search

Depth of Nodes

Solution Generated Time Memory

2 1100 0.11 seconds 1 MB

4 111,100 11 seconds 100 MB

8 109 31 hours 1 TB

12 1013 35 years 10 PB

Assuming b=10, 10000 nodes/sec, 1kbyte/node

Depth-First Search (DFS)

• Expand deepest unexpanded node

• Implementation:

– For DFS, fringe is a first-in-first-out (FIFO) queue

– new successors go at beginning of the queue

• Repeated nodes?

– Simple strategy: Do not add a state as a leaf if that state is on the

path from the root to the current node

28

How to do depth-first searching

• Put the root node on a stack;
while (stack is not empty) {
 remove a node from the stack;
 if (node is a goal node) return success;
 put all children of node onto the stack;
}
return failure;

• At each step, the stack contains some nodes from each of a
number of levels

– The size of stack that is required depends on the branching factor b

– While searching level n, the stack contains approximately b*n nodes

• When this method succeeds, it doesn’t give the path

29

Depth-first searching

• A depth-first search (DFS)

explores a path all the way to a

leaf before backtracking and

exploring another path

• For example, after searching A,

then B, then D, the search

backtracks and tries another

path from B

• Node are explored in the order

A B D E H L M N I O P C
F G J K Q

•N will be found before J

L M N O P

G

Q

H J I K

F E D

B C

A

DFS Search Tree

S S G

A B

D E

C

F
A D

Queue = {A,D}

DFS Search Tree

S S G

A B

D E

C

F
A D

B D
Queue = {B,D,D}

DFS Search Tree
S S G

A B

D E

C

F
A D

B D

E C

Queue = {C,E,D,D}

DFS Search Tree
S S G

A B

D E

C

F
A D

B D

E

D F

C

Queue = {D,F,D,D}

DFS Search Tree
S S G

A B

D E

C

F
A D

B D

E

D F

C

G

Queue = {G,D,D}

Depth-First Search (DFS)

Properties

• Complete? Yes

• Optimal? Only if path-cost = non-decreasing function of depth

• Time complexity O(bm)

• Space complexity O(bm)

• Main practical drawback? exponential time complexity

What is the Complexity of Depth-First Search?

• Time Complexity

– maximum tree depth = m

– assume (worst case) that there is 1

goal leaf at the RHS at depth d

– so DFS will generate O (bm)

• Space Complexity

– how many nodes can be in the queue

(worst-case)?

– at depth m we have b nodes

– and b-1 nodes at earlier depths

– total = b + (m-1)*(b-1) = O(bm)

d=0

d=1

d=2

G

d=0

d=1

d=2

d=3

d=4

Examples of Time and Memory Requirements for Depth-First Search

Depth of Nodes

Solution Generated Time Memory

2 1012 3 years 120kb

4 1012 3 years 120kb

8 1012 3 years 120kb

12 1012 3 years 120kb

Assuming b=10, m = 12, 10000 nodes/sec, 1kbyte/node

Depth-First Search (DFS) Properties

• Complete?

– Not complete if tree has unbounded depth

• Optimal?

– No

• Time complexity?

– Exponential

• Space complexity?

– Linear

39

Depth- vs. breadth-first searching

• When a breadth-first search succeeds, it finds a minimum-
depth (nearest the root) goal node

• When a depth-first search succeeds, the found goal node is
not necessarily minimum depth

• For a large tree, breadth-first search memory requirements
may be excessive

• For a large tree, a depth-first search may take an excessively
long time to find even a very nearby goal node

• How can we combine the advantages (and avoid the
disadvantages) of these two search techniques?

Depth- vs. breadth-first searching

• Time complexity: same, but

– In the worst-case BFS is always better than DFS

– Sometime, on the average DFS is better if:

• many goals, no loops and no infinite paths

• BFS is much worse memory-wise

• DFS is linear space

• BFS may store the whole search space.

• In general

• BFS is better if goal is not deep, if infinite paths, if many loops, if small search

space

• DFS is better if many goals, not many loops,

• DFS is much better in terms of memory

41

Depth-limited searching

• Depth-first searches may be performed with a

depth limit:

• boolean limitedDFS(Node node, int limit, int depth) {
 if (depth > limit) return failure;
 if (node is a goal node) return success;
 for each child of node {
 if (limitedDFS(child, limit, depth + 1))
 return success;
 }
 return failure;
}

• Since this method is basically DFS, if it succeeds then the path to

a goal node is in the stack

DFS with a depth-limit L
• Standard DFS, but tree is not explored below some depth-limit

L

• Solves problem of infinitely deep paths with no solutions

– But will be incomplete if solution is below depth-limit

• Depth-limit L can be selected based on problem knowledge

– E.g., diameter of state-space:

• E.g., max number of steps between 2 cities

– But typically not known ahead of time in practice

Depth-First Search with a depth-limit, L = 5

Depth-First Search with a depth-limit

Iterative Deepening Search (IDS)

• Run multiple DFS searches with increasing depth-limits

Iterative deepening search

L = 1

While no solution, do

 DFS from initial state S0 with cutoff L

 If found goal,

 stop and return solution,

 else, increment depth limit L

47

Depth-limited searching

• Depth-first searches may be performed with a

depth limit:

• boolean limitedDFS(Node node, int limit, int depth) {
 if (depth > limit) return failure;
 if (node is a goal node) return success;
 for each child of node {
 if (limitedDFS(child, limit, depth + 1))
 return success;
 }
 return failure;
}

• Since this method is basically DFS, if it succeeds then the path to

a goal node is in the stack

Iterative deepening search L=0

Iterative deepening search L=1

Iterative deepening search L=2

Iterative Deepening Search L=3

Iterative deepening search

Properties of Iterative Deepening Search

• Space complexity = O(bd)

• (since its like depth first search run different times, with maximum depth limit d)

• Time Complexity

• b + (b+b2) +(b+....bd) = O(bd)
 (i.e., asymptotically the same as BFS or DFS to limited depth d in the worst case)

• Complete?

– Yes

• Optimal

– Only if path cost is a non-decreasing function of depth

• IDS combines the small memory footprint of DFS, and has the completeness guarantee of
BFS

IDS in Practice
• Isn’t IDS wasteful?

– Repeated searches on different iterations

– Compare IDS and BFS:

• E.g., b = 10 and d = 5

• N(IDS) ~ db + (d-1)b2 +…… bd = 123,450

• N(BFS) ~ b + b2 +…… bd = 111,110

• Difference is only about 10%

– Most of the time is spent at depth d, which is the same amount of time in both algorithms

• In practice, IDS is the preferred uniform search method with a large search
space and unknown solution depth

Bi-directional search

• Alternate searching from the start state toward the goal and

from the goal state toward the start.

• Stop when the frontiers intersect.

• Works well only when there are unique start and goal states.

• Requires the ability to generate “predecessor” states.

• Can (sometimes) lead to finding a solution more quickly.

• Time complexity: O(bd/2). Space complexity: O(bd/2).

Bidirectional Search
• Idea

– simultaneously search forward from S and backwards from G

– stop when both “meet in the middle”

– need to keep track of the intersection of 2 open sets of nodes

• What does searching backwards from G mean

– need a way to specify the predecessors of G

• this can be difficult,

• e.g., predecessors of checkmate in chess?

– what if there are multiple goal states?

– what if there is only a goal test, no explicit list?

• Complexity

– time complexity at best is: O(2 b(d/2)) = O(b (d/2))

– memory complexity is the same

Uniform Cost Search

• Optimality: path found = lowest cost

– Algorithms so far are only optimal under restricted circumstances

• Let g(n) = cost from start state S to node n

• Uniform Cost Search:

– Always expand the node on the fringe with minimum cost g(n)

– Note that if costs are equal (or almost equal) will behave similarly to

BFS

Uniform Cost Search

Optimality of Uniform Cost Search?

• Assume that every step costs at least e > 0

• Proof of Completeness:

 Given that every step will cost more than 0, and assuming a finite branching factor,

there is a finite number of expansions required before the total path cost is equal to

the path cost of the goal state. Hence, we will reach it in a finite number of steps.

• Proof of Optimality given Completeness:

– Assume UCS is not optimal.

– Then there must be a goal state with path cost smaller than the goal state which was

found (invoking completeness)

– However, this is impossible because UCS would have expanded that node first by

definition.

– Contradiction.

Complexity of Uniform Cost

• Let C* be the cost of the optimal solution

• Assume that every step costs at least e > 0

• Worst-case time and space complexity is:

 O(b [1 + floor(C*/e)])

Why?

 floor(C*/e) ~ depth of solution if all costs are

 approximately equal

Average case complexity of these algorithms?

• How would we do an average case analysis of these

algorithms?

• E.g., single goal in a tree of maximum depth m

– Solution randomly located at depth d?

– Solution randomly located in the search tree?

– Solution randomly located in state-space?

– What about multiple solutions?

 [left as an exercise]

Avoiding Repeated States

• Possible solution

– do not add nodes that are on the path from the root

• Avoids paths containing cycles (loops)

– easy to check in DFS

• Avoids infinite-depth trees (for finite-state problems) but does not avoid

visiting the same states again in other branches

S

B

C

S

B C

S C B S

State Space
Example of a Search Tree

Repeated States

• Failure to detect repeated states can turn a linear problem

into an exponential one!

Summary

Breadth-First

• Enqueue nodes on nodes in FIFO (first-in, first-out) order.

• Complete

• Optimal (i.e., admissible) if all operators have the same cost. Otherwise, not

optimal but finds solution with shortest path length.

• Exponential time and space complexity, O(bd), where d is the depth of the

solution and b is the branching factor (i.e., number of children) at each node

• Will take a long time to find solutions with a large number of steps because

must look at all shorter length possibilities first

– A complete search tree of depth d where each non-leaf node has b children, has a

total of 1 + b + b2 + ... + bd = (b(d+1) - 1)/(b-1) nodes

– For a complete search tree of depth 12, where every node at depths 0, ..., 11 has 10

children and every node at depth 12 has 0 children, there are 1 + 10 + 100 + 1000 +

... + 1012 = (1013 - 1)/9 = O(1012) nodes in the complete search tree. If BFS expands

1000 nodes/sec and each node uses 100 bytes of storage, then BFS will take 35

years to run in the worst case, and it will use 111 terabytes of memory!

 Depth-First (DFS)

• Enqueue nodes on nodes in LIFO (last-in, first-out) order.

That is, nodes used as a stack data structure to order nodes.

• May not terminate without a “depth bound,” i.e., cutting

off search below a fixed depth D (“depth-limited search”)

• Not complete (with or without cycle detection, and with or

without a cutoff depth)

• Exponential time, O(bd), but only linear space, O(bd)

• Can find long solutions quickly if lucky (and short

solutions slowly if unlucky!)

• When search hits a dead-end, can only back up one level at

a time even if the “problem” occurs because of a bad

operator choice near the top of the tree. Hence, only does

“chronological backtracking”

Uniform-Cost (UCS)

• Enqueue nodes by path cost. That is, let g(n) = cost of the

path from the start node to the current node n. Sort nodes by

increasing value of g.

• Called “Dijkstra’s Algorithm” in the algorithms literature

and similar to “Branch and Bound Algorithm” in operations

research literature

• Complete (*)

• Optimal/Admissible (*)

• Admissibility depends on the goal test being applied when a

node is removed from the nodes list, not when its parent

node is expanded and the node is first generated

• Exponential time and space complexity, O(bd)

Depth-First Iterative Deepening (DFID)

• First do DFS to depth 0 (i.e., treat start node as having no successors),

then, if no solution found, do DFS to depth 1, etc.

until solution found do

 DFS with depth cutoff c

 c = c+1

• Complete

• Optimal/Admissible if all operators have the same cost. Otherwise, not

optimal but guarantees finding solution of shortest length (like BFS).

• Time complexity seems worse than BFS or DFS because nodes near the

top of the search tree are generated multiple times, but because almost

all of the nodes are near the bottom of a tree, the worst case time

complexity is still exponential, O(bd).

Depth-First Iterative Deepening

• If branching factor is b and solution is at depth d, then nodes
at depth d are generated once, nodes at depth d-1 are generated
twice, etc.

– IDS : (d) b + (d-1) b2 + … + (2) b(d-1) + bd = O(bd).

– If b=4, then worst case is 1.78 * 4d, i.e., 78% more nodes
searched than exist at depth d (in the worst case).

• However, let’s compare this to the time spent on BFS:

– BFS : b + b2 + … + bd + (b(d+1) – b) = O(bd).

– Same time complexity of O(bd), but BFS expands some
nodes at depth d+1, which can make a HUGE difference:

• With b = 10, d = 5,

• BFS: 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100

• IDS: 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

• IDS can actually be quicker in-practice than BFS,
even though it regenerates early states.

Depth-First Iterative Deepening

• Exponential time complexity, O(bd), like BFS

• Linear space complexity, O(bd), like DFS

• Has advantage of BFS (i.e., completeness) and also

advantages of DFS (i.e., limited space and finds

longer paths more quickly)

• Generally preferred for large state spaces where

solution depth is unknown

Comparison of Uninformed Search Algorithms

